Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreSecure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show MorePurpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Erro
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
The current research aims to answer the following questions: what is the substance of democracy? What is the content of a democratic society? What is the role of university professor in the democratic development of the student university in light of the new Iraqi society? In order to achieve the goals of the research, the researcher developed an a questionnaire based on literature, Iraq's draft constitution in 2005, and his experience of the field of teaching human rights and public freedoms and the teaching of democracy. It was applied to a sample of faculty members in Department of Education and Psychology / College of Education / University Baghdad for the year 20014 were obtained their answers were then processed statistically. Henc
... Show MoreThe tight gas is one of the main types of the unconventional gas. Typically the tight gas reservoirs consist of highly heterogeneous low permeability reservoir. The economic evaluation for the production from tight gas production is very challenging task because of prevailing uncertainties associated with key reservoir properties, such as porosity, permeability as well as drainage boundary. However one of the important parameters requiring in this economic evaluation is the equivalent drainage area of the well, which relates the actual volume of fluids (e.g gas) produced or withdrawn from the reservoir at a certain moment that changes with time. It is difficult to predict this equival
: zonal are included in phraseological units, form metaphorical names for a person, give him various emotional and evaluative characteristics. This article examines the topic of zoomorphic metaphors that characterize a person in the Russian and Arabic languages in the aspect of their comparative analysis, since the comparative analysis of the metaphorical meanings of animalisms is an important method for studying cultural linguistics, since zoomorphic metaphors are a reflection of culture in a language.
This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show More