The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration of 10 mg/L, CSFH mass of 0.2 g/100 mL dye solution, and temperature of 25 °C. According to findings of thermodynamic, adsorption process was a spontaneous, chemical, and endothermic with increased variability at the solid-solution interface during the stabilization of the reactive dyes onto the adsorption active sites. The second-order kinetic model fits the experimental results better, indicating that the chemisorption mechanism controls the adsorption of RB49 and RR195. Meanwhile, the Sips isotherm best fitted to RB49 and RR19, indicating that both heterogeneous and homogenous adsorptions occurred. The findings suggest that CSFH has potential use as an efficient and profitable adsorbent for removing reactive dyes from aqueous solutions.
Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show Morethe physical paraneters of oxadizole derivaties as donor molecules have been measured the charge transfer and methanol as solvent have been estimated from the electonic spectra
This study is attempt to improve thermal isolation through measuring thermal conductivity composite of on polyester resin with fillers of (TiO2, ZnO, Acrylonitril, wood flour Coconut (Wf). The grain size of the fillers is 200 µm. The number of samples is (16) in addition to the virgin sample; these samples are prepared by cast molding method for polyester with filler volume fractions (5%, 10%, 15% and 20%). Shore hardness tests were used to measure the hardness and Lee disk method for thermal conductivity. The experimental results showed that the (20% ZnO) sample has the maximum value of thermal conductivity where (20% w.f) has minimum thermal conductivity .on the other hand (15% ZnO) sample give the maximum value of hardness where (20% w
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and metal surface area of fresh and spent hydrodesulphurization catalyst Co-MoAl2O3 .Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery. The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores of these samples are cylindrical, and the
... Show MoreThe prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
Urban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between t
... Show MoreThere have been many writings and discussions that dealt with the details and interpretation of the research methods and the identification of the methods and methodological methods used by researchers and writers as they deal with research topics and problems in all fields of natural and human sciences. But we noticed that the movement of science and its knowledge and development requires the identification of suitable tools and methodological methods appropriate for each type of science. In other words, attempts should be established to build appropriate methodological tools for human and cognitive activity that can be referred to as a specific science that sets out certain paths of the human sciences which is certainly the ori
... Show MoreThis work deals with determination of optimum conditions of direct diffusion bonding welding of austenitic stainlesssteel type AISI 304L with Oxygen Free High Conductivity (OFHC) pure copper grade (C10200) in vacuum atmosphere of (1.5 *10-5 mbr.). Mini tab (response surface) was applied for optimizing the influence of diffusion bonding parameters (temperature, time and applied load) on the bonding joints characteristics and the empirical relationship was evaluated which represents the effect of each parameter of the process. The yield strength of diffusion bonded joint was equal to 153 MPa and the efficiency of joint was equal to 66.5% as compared with hard drawn copper. The diffusion zone reveals high microhardness than coppe
... Show More