The adsorption process of reactive blue 49 (RB49) dye and reactive red 195 (RR195) dye from an aqueous solutions was explored using a novel adsorbent produced from the sunflower husks encapsulated with copper oxide nanoparticle (CSFH). Primarily, the features of a CSFH, such as surface morphology, functional groups, and structure, were characterized. It was determined that coating the sunflower husks with copper oxide nanoparticles greatly improved the surface and structural properties related to the adsorption capacity. The adsorption process was successful, with a removal efficiency of 97% for RB49 and 98% for RR195 under optimal operating conditions, contact time of 180 min, pH of 7, agitation speed of 150 rpm, initial dye concentration of 10 mg/L, CSFH mass of 0.2 g/100 mL dye solution, and temperature of 25 °C. According to findings of thermodynamic, adsorption process was a spontaneous, chemical, and endothermic with increased variability at the solid-solution interface during the stabilization of the reactive dyes onto the adsorption active sites. The second-order kinetic model fits the experimental results better, indicating that the chemisorption mechanism controls the adsorption of RB49 and RR195. Meanwhile, the Sips isotherm best fitted to RB49 and RR19, indicating that both heterogeneous and homogenous adsorptions occurred. The findings suggest that CSFH has potential use as an efficient and profitable adsorbent for removing reactive dyes from aqueous solutions.
Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show MoreBackground: One of the most important complications of fixed orthodontic treatment is formation of white spots, which are initial carious lesions. Addition of antimicrobial agents into orthodontic adhesive material might be wise solution for prevention of white spots formation. The aim of this study was to evaluate the antibacterial properties of orthodontic adhesive primer against S. Mutans after adding the three different types of nanoparticles (Ag, ZnO, or TiO2). Materials and methods: Discs were prepared using empty insulin syringe approximately 2 mm×2 mm rounded in shape specimens (40 discs) were divided into four groups (ten discs for each group): The first group was the control (made from primer only), the second group (10 dis
... Show MoreMagnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show MoreProteus mirabilis is considered as a third common cause of catheter-associated urinary tract infection, with urease production, the potency of catheter blockage due to the formation of biofilm formation is significantly enhanced. Biofilms are major virulence factors expressed by pathogenic bacteria to resist antibiotics; in this concern the need for providing new alternatives for antibiotics is getting urgent need, This study aimed to explore whether green synthesized zinc oxide nanoparticles (ZnO NPs) can function as an anti-biofilm agent produced by P.mirabilis. Bacterial cells were capable of catalyzing the biosynthesis process by producing reductive enzymes. The nanoparticles were synthesized from cell free
... Show MorePoly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of th
Reactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and
... Show MoreBackground: Chronic kidney disease is a gradual loss of kidney function with diabetes and hypertension as the leading cause. Chronic kidney disease is one of these systemic diseases that can affect salivary contents. Aims: This study aimed to assess salivary immunoglobulin A, interleukin-6 and C- reactive protein in chronic kidney disease patients on hemodialysis and those on conservative treatment in comparison with control subjects. Materials and methods: Ninety subjects were included in this study divided into three groups: 30 patients with chronic kidney disease on hemodialysis for at least 6 months ago; 30 patients with chronic kidney disease on conservative treatment and 30 healthy control subjects. Secretory immunoglobulin A, inte
... Show MoreNd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.