Background: Ulcerative colitis (UC) is an inflammatory bowel disease restricted to the large intestine, characterized by superficial ulceration. It is a progressive and chronic disease requiring long-term treatment. Although its etiology remains unknown, it is suggested that environmental factors influence genetically susceptible individuals, leading to the onset of the disease. (C-X-C) ligand 9 is a chemokine that belongs to the CXC chemokine family, it plays a role in the differentiation of immune cells such as cytotoxic lymphocytes, natural killer T cells, and macrophages. Its interaction with its corresponding receptor CXCR3 which is expressed by a variety of cells such as effector T cells, CD8+ cytotoxic T cells, and macrophage, leads to stimulation of the production of IFN-γ and TNF-α and in turn, stimulates the production of Th1 chemokines which results in promoting the inflammation. Objectives: To assess the significance of serum chemokine (C-X-C) ligand 9 as a potential marker for identifying ulcerative colitis in adults with inflammatory bowel disease. Patients and Methods: This is a case-control study that included 50 patients diagnosed with UC, aged between 18 and 75 years, compared to 50 healthy controls, aged between 18 and 60 years. The study was conducted between November 2022 and March 2023, at the Gastroenterology and Hepatology Teaching Hospital at the Medical City Complex in Baghdad. The serum samples were analyzed using the Enzyme-Linked Immunosorbent Assay (ELISA) technique. Results: The mean ± SD in pg/ml of serum CXCL9 in patient group was 26.9 ± 9.05 and in control group was 6.4 ± 2.37 (p< 0.0001) which indicates a highly significant difference. Conclusion: CXCL 9 may be employed as a biomarker for identifying ulcerative colitis and it can be used as a tool for measuring disease activity, in addition to the possibility of being a potential therapeutic target.
A fracture is a damage to bone tissue that causes damage to the tissue surrounding the bone and may penetrate the skin. Subjects and methods: the present study included (80) fractured Iraqi patients (and 40) patients with DM2 and (40) without DM2 and compared them with (40) healthy control. Patients and control are matched in age. This study showed a significant increase in retinol-binding protein 4 (RBP4) and a considerable decrease in Vit .A GPT and GOT in fracture patients with and without DM2. In addition, there was a significant negative correlation between RBP4 with (GPT and GOT) in fracture patients with DM2 and a significant positive correlation between RBP4 with (GPT and GOT) in fracture patients without DM2.
... Show MoreBackground: Recent research indicates that persistent inflammatory responses may contribute to the rise of diabetic nephropathy (DN) and diabetic cardiovascular disease (DCVD) in type 2 diabetes mellitus patients (DM2). Numerous molecules associated with inflammation and angiogenesis have been implicated in the development and progression of DN and DCVD, respectively. Methods: The subjects were separated into five groups: healthy controls (n= 25), type 2 diabetes mellitus patients (n= 30), type 2 diabetes mellitus patients with nephropathy DN (n= 30), and type 2 diabetes mellitus patients with cardiovascular disease DCVD (n= 30). The blood levels of irisin, IL-8, HbA1C, urea, and creatinine were determined. Results: In current study there w
... Show MoreMicroalgae have been used widely in bioremediation processes to degrade or adsorb toxic dyes. Here, we evaluated the decolorization efficiency of Chlorella vulgaris and Nostoc paludosum against two toxic dyes, crystal violet (CV) and malachite green (MG). Furthermore, the effect of CV and MG dyes on the metabolic profiling of the studied algae has been investigated. The data showed that C. vulgaris was most efficient in decolorization of CV and MG: the highest percentage of decolorization was 93.55% in case of MG, while CV decolorization percentage was 62.98%. N. paludosum decolorized MG dye by 77.6%, and the decolorization percentage of CV was 35.1%. Metabolic profiling of
... Show MoreGeotechnical characterization of the sites has been investigated with the collection of borehole data from different sources. Using the data, grain size distribution curves have been developed to understand the particle size distribution of the alluvium present. These curves were further used for preliminary assessment of liquefiable areas. From geotechnical characterization, it has been observed that the soil profile in the two sites is dominated by sand and silty sand.Seed and Idriss (1971) approachhas been usedevaluatethe liquefaction potentialbydeterminationof the relation between the maximum ground acceleration (a max/g) valuesdue to an earthquake and the relative density of a sand deposit in the field. The results reveal that
... Show MoreNanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show More
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |
BCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS)
... Show More