Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was adopted, which is considered a challenge for researchers because it includes different age groups. Many diseases, and the results obtained by the system were 96% accurate.
This study explores the role of nanomaterials in the performance of asphalt binders and mixtures. Two commonly available nanomaterials, i.e., nanosilica (NS) and nanoalumina (NA), were used at contents of 0%, 2%, 4%, 6%, and 8% by weight of asphalt binder. A set of experiments was carried out at the binder level to investigate properties such as penetration, softening point, aging-related mass loss, nanomaterial dispersion (storage stability), and workability (rotational viscosity). In addition, the suitability of NS and NS was also assessed through the testing of nanomodified asphalt mixtures, which focused on Marshall properties, the resilient modulus, moisture susceptibility, permanent deformation, and fatigue resistance. The findings in
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreAerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreAbstract
The changes that happened in the environment of business have great effects upon organizations with different activities specially the banks which requires the existence of an able opinion resources can adapt with the changes . Accordingly importance put upon intellectual capital which become one of the basic resources for organizations and one of success and growth elements with the availability of expertise , skills and capability of making essential changes in different process due to the presentation of innovations and creations of the to support banks activities .Therefore the intellectual capital represents the more r
... Show MoreBackground: Periodontal diseases are inflammatory disorders caused by the accumulation of oral biofilm and the host response to this accumulation which characterized by exaggerated leukocytes and neutrophils attraction to the sites of inflammation by chemoattractants which are a very important part of the pathogenesis of periodontal diseases. This study aimed to determine and compare the clinical periodontal parameters and the leukocyte cell types in the peripheral blood between patients with gingivitis and periodontitis with different severities compared to healthy controls. Materials and methods: This study included 150 male subjects aged between 35-50 years. They were divided into three groups: gingivitis group (n=30), periodontitis p
... Show More