Preferred Language
Articles
/
5xeo8o8BVTCNdQwCioBD
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was adopted, which is considered a challenge for researchers because it includes different age groups. Many diseases, and the results obtained by the system were 96% accurate.

Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2018
Journal Name
International Journal Of Health Sciences
Molecular assessment of some cardiovascular genetic risk factors among Iraqi patients with ischemic heart diseases
...Show More Authors

Abstract Objective: The underlying molecular basis of ischemic heart diseases (IHDs) has not yet been studied among Iraqi people. This study determined the frequency and types of some cardiovascular genetic risk factors among Iraqi patients with IHDs. Methods: This is a cross-sectional study recruiting 56 patients with acute IHD during a 2-month period excluding patients >50 years and patients with documented hyperlipidemia. Their ages ranged between 18 and 50 years; males were 54 and females were only 2. Peripheral blood samples were aspirated from all patients for troponin I and DNA testing. Molecular analysis to detect 12 common cardiovascular genetic risk factors using CVD StripAssay® (ViennaLab Diagnostics GmbH, Austria) was performed

... Show More
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks

... Show More
View Publication
Publication Date
Fri Jan 07 2022
Journal Name
International Journal Of Early Childhood Special Education
Hierarchical learning and its effect on learning some basic skills in fencing for third stage students.
...Show More Authors

MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022

View Publication
Publication Date
Wed Mar 16 2022
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
Smart Learning based on Moodle E-learning Platform and Digital Skills for University Students
...Show More Authors

Publication Date
Wed Dec 30 2015
Journal Name
Al-kindy College Medical Journal
Cystatin (C) and its correlation to ischemic heart disease
...Show More Authors

Background: Cystatin C is recently considered to be a good predictor of cardiovascular morbidity and mortality in patients with coronary artery disease (CAD)Objectives: Correlation between cystatin and ischemic heart disease.Methods :One hundred forty patients (140) with ischemic heart disease admitted to thin study at Baghdad teaching hospital from the period June. 2011 to Jan. 2012. Those patients was categorized into three groups.Group (A): patients with ischemic heart failure.Group (B): Patients with myocardial infarction.Group (C) patients with unstable angina.All these groups were in comparison to fifty (50) healthy controls. Fasting serum citation (C) were measured in all patients and control in addition to all other routine inves

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (322)
Crossref (326)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials &amp; Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref