This study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand hours showed that the pumps unit capability cannot cover the high water demand during that time and resulted in a loss of pressure values, which were ranged between 0.2 and 2.1 bar. Moreover, the simulated results of the residual chlorine levels were within the permissible limits of 0.4–0.7 ppm, in different locations in the network. Providing good quality and adequate water supply is an important component for human life development. Modeling WDS is an efficient method of gaining a true understanding of the functioning of the network and determining the factors and conditions affecting the performance of the network.
The study consisted in the development and use of a practical method to detect and
monitor, analyze and produce maps of changes in land use and land cover in the district of
Mahmudiya in Baghdad during the period 1990-2007 using the applications of remote sensing
techniques and with the assisstant of geographic information systems (GIS),as a valuable
contribution to land degradation studies.
This study is based maiuly on the processing on two subsets of landsat5 TM images picked up
in August 1990 and 2007 respectively in order to facilitate comparision and were thengeometrically and radiometrcally calibrated ,to used for digital classification purposes using
maximum liklihoods classification or six spectral bands of
Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreWellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreThis research deals with the relationship between television advertising and buying random cosmetics, where we find that TV ads influence on the purchasing behavior of women, has conducted research in the field on a sample of women in the University of Baghdad, was a random sample taken from 150 different women in the age and social levels educational and cultural students and employees and teachers in order to sample representative be for the research community, and designed a questionnaire for this purpose form as a tool to collect data and information search and analyzed they answered the sample surveyed using a statistical program (spss) to extract percentages And correlation coefficients and testing square Kay , The study found Of w
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Attacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreSickle cell disease (SCD) comprises an inherited blood disorder that is life long and affects many people globally. In spite of the development in treatment, SCA is a considerable cause of mortality and morbidity. The present study tries to assess the role of leukocytes represented by β integrin(CD18) and platelets and their productivity in the pathogenicity of disease during the steady state and crisis in comparison with the healthy as-control group, SCD patients (15) enrolled during crisis and steady state (follow up) showed a significant increase in leukocytes and platelets cells productivity during crisis when compared to the steady state and in the steady state when compared to the healthy control group . In this study, SCD patho
... Show MoreBackground: Cholera has been recognized as a killer disease since earliest time. The disease is caused by infection of the small intestine by Vibrio cholerae O1 and O1391 which is characterized by severe dehydrating diarrheal condition and is one disease in modern times that is epidemic, endemic and pandemic in nature. Objective: This study was carried out to detect and isolate V. cholerae from patients suffered from watery diarrhea, which may cause severe complications such as dehydration, shock followed by death. Materials and methods: stool specimens were collected from 308 patients with watery diarrhea. These samples were tested with many criteria such as TCBS agar, gram stain, biochemical tests and VITEK-2 system to improve the isolati
... Show More