A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The total number of grids is (5919732) in the geological model. CPI (computer-processed interpretation) for 7 wells contain (facies, porosity, water saturation, and NTG) was imported to Petrel 2016 software. Facies log was upscaled and distributed along the 3D grid. Truncated Gaussian with trend method was used to distribute the facies taking into account the conceptual facies model of the Mishrif formation. The result shows that the trend of sedimentation suggests a retrogradation pattern from NW to SE. Facies1 (Reservoir), dominated by Limestone brown to light brown, with oil shows has good distribution within the area and thinning towards the NW. The petrophysical properties (porosity, water saturation, NTG, and permeability) were distributed using the Sequential Gaussian Simulation (SIS) method and the facies model as a guide for distribution. The results show that petrophysical properties enhanced in the southeast area, representing the reef region compared to the northwest side of the study area. Unit Mishrif B had the highest porosity value and lower water saturation value along the entire field. While the units Mishrif B1, B2, and B3 show a gradual decrease in reservoir properties towards the field's southeast side. The results also show that the conceptual facies model has great benefit in constructing the 3D geological model, reflecting the geological knowledge used to correctly distribute the reservoir properties (porosity and water saturation).
Unsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show MoreBulk polycrystalline samples have been prepared by the two-step solid state reaction process. It has been observed that as grown Tl2-xHgxSr2Ca2Cu3O10+δ (with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1) corresponds to the 2223 phase. It has been found that Tc varies with Hg content .The optimum Tc is about 120K for the composition Tl1.6Hg0.4Sr2Ca2Cu3O10+δ.The microstructure for Tl1.6Hg0.4Sr2Ca2Cu3O10+δ observed to be most dense and this phase exhibits the highest stability.
Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreThe slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz
... Show MoreAn integrated lithofacies and mineralogical assemblage was used to describe a depositional model and sequence stratigraphic framework of the Maastrichtian–Danian succession in the Western Desert of Iraq and eastern Jordan. Fifteen lithofacies types were grouped into three associations recognized in a distally steepened ramp characterized by an apparent, distinct increase in a gradient paleobathymetric deepening westward. The clay and nonclay minerals are dominated by smectite and palygorskite, with trace amounts of kaolinite, sepiolite, illite and chlorite. Meanwhile, quartz, calcite, dolomite, opal CT (Cristobalite - Tridymite), and apatite are the main nonclay minerals. The widely dominated smectite in the Western Phosphatic Basin of Ir
... Show More16S rRNA gene sequence examination is an effective instrument for characterization of new pathogens in clinical specimens. Akey component of colonization, biofilm formation, and protection of the pragmatic human pathogen Pseudomonasaeruginosais the biosynthesis of the exopolysaccharide Psl.Extracellular polysaccharides,biofilm, are secreted by microorganisms into the neighboring environment and are significant for surface attachment and keeping structural safety within biofilms.Biofilm production is an important technique for the survival of P. aeruginosa,and its association with antimicrobial resistance represents a defy for patient therapeutics. The aim of the current research is to assess the antibiotic resistance manner and distribution
... Show More