A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The total number of grids is (5919732) in the geological model. CPI (computer-processed interpretation) for 7 wells contain (facies, porosity, water saturation, and NTG) was imported to Petrel 2016 software. Facies log was upscaled and distributed along the 3D grid. Truncated Gaussian with trend method was used to distribute the facies taking into account the conceptual facies model of the Mishrif formation. The result shows that the trend of sedimentation suggests a retrogradation pattern from NW to SE. Facies1 (Reservoir), dominated by Limestone brown to light brown, with oil shows has good distribution within the area and thinning towards the NW. The petrophysical properties (porosity, water saturation, NTG, and permeability) were distributed using the Sequential Gaussian Simulation (SIS) method and the facies model as a guide for distribution. The results show that petrophysical properties enhanced in the southeast area, representing the reef region compared to the northwest side of the study area. Unit Mishrif B had the highest porosity value and lower water saturation value along the entire field. While the units Mishrif B1, B2, and B3 show a gradual decrease in reservoir properties towards the field's southeast side. The results also show that the conceptual facies model has great benefit in constructing the 3D geological model, reflecting the geological knowledge used to correctly distribute the reservoir properties (porosity and water saturation).
Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreThe parliamentary election is one of the features of democratic systems that give individuals the right to participate in government and political election-making. Typically, the process of parliamentary elections received wide attention from media, as well as attention from large segments of the public because they understand the vast importance to assume political positions and associated fates of people and their destinies. Its importance comes from the fact that it allows citizens the right to participate in managing the public affairs by granting their confidence and voices to the elected president or his representatives in the parliamentary.
Media task is to emerge democratic societies, in particular, in the mission of urging p
The research aims to propose a plan to reduce the waiting times in the Multiple Server queuing model (M, M, C) (FCFS, ∞, ∞), and adopt this plan, mainly on the arrival rate (λ), some process have been achieved in order to reduce the arrival rate per service channel that should reduces the overall waiting time in the system. This research is on two sections where the first deals with theory and how it has been approved the proposed method in theory and in mathematical equations as well as the second section, which dealt with the practical goal of applying the proposed method and comparing it with the traditional way, which was followed in calculating the performance measures in this model.
&
The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode
... Show MoreIncreasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is
... Show MoreAs the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreIn this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err
... Show More