The durability of asphalt pavement is associated with the properties and performance of the binder. This work-study intended to understand the impact of blending Styrene-Butadiene-Styrene (SBS) to conventional asphalt concrete mixtures and calculating the Optimum Asphalt Content (OAC) for conventional mixture also; compare the performance between SBS modified with the conventional mixture. Two different kinds of asphalt penetration grades, A.C. (40-50) and A.C. (60-70), were improved with 2.5 and 3.5% SBS polymer, respectively. Marshall properties were determined in this work. Optimum Asphalt Content (OAC) was 4.93 and 5.1% by weight of mixture for A.C. (40-50) and (60-70), respectively. Marshall properties results show an increasement in the stability value by 8.65 and 20.19% for A.C. (40-50) with 2.5 and 3.5% of SBS, respectively. And an increasement by 9.32 and 20.61% for AC (60-70) with 2.5 and 3.5% of SBS respectively. Furthermore, the results indicate a decrease in Marshall flow by 14.7 and 26.47% for A.C. (40-50) with 2.5 and 3.5% SBS respectively and a decrease by 10.46 and 21.21% for A.C. (60-70) with 2.5 and 3.5% SBS respectively. Other Marshall properties were also calculated. Moreover, Blending SBS polymers to conventional asphalt mixtures produces a better performance to asphalt binder and better Marshall properties, which provides a great solution to Iraqi road problems affected by temperature and high traffic load, including less maintenance. Doi: 10.28991/cej-2021-03091709 Full Text: PDF
ZnxNi1-x-yCuyFe2O4 spinel ferrite were prepared using solid state reaction method with (y=0.1, x=0.2, 0.3, 0.4, 0.5, 0.6 ) . X-ray diffraction with diffractometer CuKα analysis have been carried out and studied showing single phase spinel cubic with space group FDÍž 3m for all prepared samples . Lattice parameters and crystallite grain size and x-ray density(Ïx-ray) bulk density and porosity ratio's were calculated and showed good agreement with the international data reported in the scientific research's.
At atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreUnsaturated soil can raise many geotechnical problems upon wetting and drying resulting in swelling upon wetting and collapsing (shrinkage) in drying and changing in the soil shear strength. The classical principles of saturated soil are often not suitable in explaining these phenomena. In this study, expansive soil (bentonite and sand) were tested in different water contents and dry unit weight chosen from the compaction curve to examine the effect of water content change on soil properties (swelling pressure, expansion index, shear strength (soil cohesion) and soil suction by the filter paper method). The physical properties of these soils were studied by conducting series of tests in laboratory. Fitting methods
... Show MoreThin films of pure yttrium oxide (Y2O3) and doped with cerium oxide (CeO2) were prepared by the chemical spray pyrolysis(CSP)method. The structural, optical and electrical properties of the prepared films were investigated. The analysis of X-ray diffraction (XRD) thin films revealed that the undoped and doped Y2O3 were amorphous with a broad hump around 27o and narrow humps around 48o and 62o for all samples. Except for the Y2O3:6wt.%CeO2 thin film, all had signal preferential orientation along the (100) plane at 2θ=12.71o which belongs to CeO2, Field emission scanning electron mic
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThe applications of Ruscheweyh derivative are studied and discussed of class of meromorphic multivalent application. We get some interesting geometric properties, such as coefficient bound, Convex linear combination, growth and distortion bounds, radii of starlikenss , convexity and neighborhood property.
Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MorePolymer composites were prepared using epoxy resin (EP) and unsaturated polyester (UPE) as a blend matrices, which were mixed together in different percentages (starting from 90:10) of (epoxy/polyester) respectively, and ending with (50:50) of (epoxy/polyester). The optimum mixing ratio (OMR) of the components was decided upon the results of the impact strength value of these blending ratio, which showed the highest value of (16.3) KJ/m2 for the blending ratio (80:20) of (EP/UPE) respectively.
The blend with (OMR) was chosen to be reinforced with three different weight fractions of reinforcement; the 1st one was reinforced with nano titanium oxide (TiO2) with a weight fraction (2% wt.), the 2nd one was reinforced with both nano (TiO2)
This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers a
... Show More