Preferred Language
Articles
/
5hezd5IBVTCNdQwCCbAz
REMOVAL OF PHOSPHORUS FROM WASTEWATER BY ADSORPTION ONTO NATURAL IRAQI MATERIALS
...Show More Authors

This study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and decreased from60 to 30 % for porcelinite. As for bauxite it increased from 60 to 90 % reaching pH 6 thendecreased to 30%. Burned kaolin showed the lowest adsorption capacities in these tests. Theadsorption isotherms showed that the Langmuir–Freundlich model significantly correlated theexperimental data for porcelinite and bauxite, whereby the Freundlich model was best forlimestone. The Freundlich and Langmuir–Freundlich models both fit for Burned kaolin. Theresults show that it is possible to adsorb phosphate from wastewater onto natural Iraqi materialand their ability could be ranged as limestone> bauxite> porcelanite> burned kaolin.

Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Removal of Sulfate from Waste Water by Activated Carbon
...Show More Authors

Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.

The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of  sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased  with adsorbent mass increasing. The maximum removal value of sulfate at  different pH experiments is (43%) at pH=7.

View Publication Preview PDF
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Batch and Fixed-Bed Modeling of Adsorption Reactive Remazol Yellow Dye onto Granular Activated Carbon
...Show More Authors

In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Science And Research
Theoretical and Experimental Study of Nanofiltration and Reverse Osmosis Membranes for Removal of Heavy Metals from Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Nov 28 2020
Journal Name
The Iraqi Journal Of Science
Removal of Aniline Blue from Textile Wastewater using Electrocoagulation with the Application of the Response Surface Approach
...Show More Authors

This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be

... Show More
Crossref (6)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conf. Proc.
Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes
...Show More Authors

This study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (14)
Scopus Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Removal of Aniline Blue from Textile Wastewater using Electrocoagulation with the Application of the Response Surface Approach
...Show More Authors

This paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance between

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Fri Jun 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption Kinetic and Isotherms Studies of Thiophene Removal from Model Fuel on Activated Carbon Supported Copper Oxide
...Show More Authors

In the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Engineering
Comparative Study between Nanofiltration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre

... Show More
Preview PDF