This study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and decreased from60 to 30 % for porcelinite. As for bauxite it increased from 60 to 90 % reaching pH 6 thendecreased to 30%. Burned kaolin showed the lowest adsorption capacities in these tests. Theadsorption isotherms showed that the Langmuir–Freundlich model significantly correlated theexperimental data for porcelinite and bauxite, whereby the Freundlich model was best forlimestone. The Freundlich and Langmuir–Freundlich models both fit for Burned kaolin. Theresults show that it is possible to adsorb phosphate from wastewater onto natural Iraqi materialand their ability could be ranged as limestone> bauxite> porcelanite> burned kaolin.
In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show MoreThe Wheat husk is one of the common wastes abundantly available in the Middle East countries especially in Iraq. The present study aimed to evaluate the Wheat husk as low cost material, eco-friendly adsorbents for the removal of the carcinogenic dye (Congo red dye) from wastewater by investigate the effect of, at different conditions such as, pH(3-10), amount of adsorbents (1-2.3gm/L),and particle size (125-1000) μm, initial Congo red dye concentration(10, 25 , 50 and 75mg/l) by batch experiments. The results showed that the removal percentage of dye increased with increasing adsorbent dosage, and decreasing particle size. The maximum removal and uptake reached (91%) , 21.5mg/g, respectively for 25 initial concent
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreThis study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MoreSome mechanical and thermal properties of mullite samples prepared by mixing different phases of alumina and silica powders have been studied according to ASTM methods the cold crushing strength of the sintcred bodies.With different porosity, at room temperature was in the range(18-54)Mpa
Phosphorus (P) is an element that is potatoes require in large amounts. Soil pH is a crucial factor impacting phosphorus availability in potato production. This study was conducted to evaluate the influence of P application rates on the P efficiency for tuber yield, specific gravity, and P uptake. Additionally, the relationship between soil pH and total potato tuber yield was determined. Six rates of P fertilization (0–280 kg P ha−1) were applied at twelve different sites across Northern Maine. Yield parameters were not responsive to P application rates. However, regression analysis showed that soil pH was significantly correlated with total potato tuber yield(R2 = 0.38). Sites with soil pH values < 6 had total tuber yields,
... Show More