The aim of the research is to apply fibrewise multi-emisssions of the paramount separation axioms of normally topology namely fibrewise multi-T0. spaces, fibrewise multi-T1 spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal spaces and fibrewise multi-functionally normal spaces. Also we give many score regarding it.
In this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
The main purpose of this article is to study the soft LC-spaces as soft spaces in which every soft Lindelöf subset of is soft closed. Also, we study the weak forms of soft LC-spaces and we discussed their relationships with soft LC-spaces as well as among themselves.
In this work, we introduce a new convergence formula. We also define cluster point , δ-Cauchy sequence, δ-convergent, δ-completeness , and define sequentially contraction in approach space. In addition, we prove the contraction condition is necessary and sufficient to get the function is sequentially contraction as well as we put a new structure for the norm in the approach space which is called approach –Banach space, we discuss the normed approach space with uniform condition is a Hausdorff space. Also, we prove a normed approach space is complete if and only if the metric generated from approach space is complete as well as prove every finite –dimensional approach normed space is δ-complete. We prove several r
... Show MoreIn this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
We study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
The concept of separation axioms constitutes a key role in general topology and all generalized forms of topologies. The present authors continued the study of gpα-closed sets by utilizing this concept, new separation axioms, namely gpα-regular and gpα-normal spaces are studied and established their characterizations. Also, new spaces namely gpα-Tk for k = 0, 1, 2 are studied.
The purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise closure topological spaces, fibrewise wake topological spaces, fibrewise strong topological spaces over B. Also, we introduce the concepts of fibrewise w-closed (resp., w-coclosed, w-biclosed) and w-open (resp., w-coopen, w-biopen) topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
Sequences spaces , m , p have called quasi-Sobolev spaces were introduced by Jawad . K. Al-Delfi in 2013 [1]. In this paper , we deal with notion of quasi-inner product space by using concept of quasi-normed space which is generalized to normed space and given a relationship between pre-Hilbert space and a quasi-inner product space with important results and examples. Completeness properties in quasi-inner product space gives us concept of quasi-Hilbert space . We show that , not all quasi-Sobolev spa
... Show More