Monitoring the river’s water quality is important to predict the environmental risk. The Tigris River is Baghdad’s main source for living organisms, drinking water, and agro-industrial purposes. Three selected sites were carried out using different water quality parameters from July 2017 to April 2018 in the Tigris River in Baghdad. Fourteen water quality parameters: water temperatures, turbidity, electrical conductivity, pH, calcium, magnesium, chloride, sulfate, phosphate, dissolved oxygen (DO), alkalinity, total hardness, total dissolved substances TDS, and biological oxygen demand (BOD5). According to CCME WQI analysis, the water quality of Tigris River water was Fair for aquatic life and Poor for drinking water
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
sensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreThis paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1) is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to
... Show MoreThis work presents the construction of a test apparatus for air-conditioning application that is flexible in changing a scaled down adsorbent bed modules. To improve the heat and mass transfer performance of the adsorbent bed, a finned-tube of the adsorbent bed heat exchanger was used. The results show that the specific cooling power (SCP) and the coefficient of performance (COP) are 163 W/kg and 0.16, respectively, when the cycle time is 40 min, the hot water temperature is 90oC, the cooling water temperature is 30oC and the evaporative water temperature is 11.4oC.
The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrien
... Show More