The research includes synthesis and identification of novel three amino acids ligands complexes of some heavy metal (II) ions by using the amino acids like glycine, L-alanine and L-valine. New metal mixed ligand complexes with amino acids are prepared the reaction by reacting the three amino acids with the metals(II) chloride by using 50% ethanolic solution and 50% distall water in the molar ratio [1:1:1:1] ( M:Gly:Ala:Val) except for Co(II) and Ni(II) complexes were found after diagnosis the coordination with both Lalanine and L-valine. The prepared complexes identified by using physical properties, flame atomic absorption and conductivity measurements, in addition, mass, FT.IR and UV.vis spectrum as well magnetic moment data. The general formula of the complexes is Na[M(Gly)(Ala)(Val)].H2O in which the Glycine (C2H5NO2) is symbolized as (Gly), the L-alanine (C3H7NO2) is symbolized (Ala), L-valine (C5H11NO2) is symbolized (Val) and M(II) represent Cu(II), Zn(II), Cd(II) and Hg(II), except the Co(II) complex is in the formula [Co(Ala)(Val)(OH2)2]. and the Ni(II) complex is in the formula Na[Ni(Ala)(Val)Cl].H2O. Each of the glycine, L-alanine and L-valine behave as a bidentate ligand which is coordinated through the oxygen atom of the carboxyl group (-COO- ) and the nitrogen atom of the amino group (-NH2). The suggest geometry of the metal(II) complexes to be octahedral except the Ni(II) complex is square pyramid geometry. In the research the study of antibacterial and antifungal activity of the three amino acidsilgands and their complexes.
Polyacetal was synthesized from the reaction of PVA with para-methyoxy benzaldehyde. Polymer metal complexwas prepared by reaction with Cu, polymer blend with Chitosan was prepared through the technique of solution casting method.All prepared compounds have been characterized through FT-IR, DSC, SEM as well as the Biological activity. The FT-IR results indicated the formation of polyacetal. The DSC results indicated the thermal stability regarding prepared polymer, polymermetal complex and Chitosan polymer blends. Antibacterial potential related to synthesized polyacetal, its metal complex andChitosan blend against four types of bacteria namely, Staphylococcus aureas, Psedomonas aeruginosa, Bacillus subtilis, Escherichia coli was examined a
... Show More1,3,4-oxadizole and pyrazole derivatives are very important scaffolds for medicinal chemistry. A literature survey revealed that they possess a wide spectrum of biological activities including anti-inflammatory and antitumor effects.
To describe the synthesis and evaluation of two classes of new niflumic acid (NF) derivatives, the 1,3,4-oxadizole derivatives (compounds 3 and (4A-E) and pyrazole derivatives (compounds 5 and 6), as EGFR tyrosine kinase inhibitors in silico and in vitro.
The designed compounds were synthesized using convent
An oxidative polymerization approach was used to create polyaniline (PANI) and Fe2O3 /PANI nanoparticle combination. Various characterization approaches were used to investigate the structural, morphological, and Fe2O3 /PANI nanoparticle structures. The findings support the synthesis of polycrystalline nanoparticle PANI and Fe2O3 /PANI spherical nanoparticle composites. Gram-positive bacteria are tested for antibacterial activity. Various quantities of Nanoparticles of PANI and Fe2O3 /PANI nanoparticle composites were used to test Staph-aureus and gram-negative bacteria, E-coli, and candida species. PANI has antibacterial properties against all microo
... Show Morethe physical paraneters of oxadizole derivaties as donor molecules have been measured the charge transfer and methanol as solvent have been estimated from the electonic spectra
Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreThe mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, w
... Show More