Abstract
In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy has been introduced and developed in the sense that, the optimal control solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate the structure uncertainty in the given semi-explicit (descriptor) control
... Show MoreThe reaction of 2, 4, 6-trihydroxyactophenonemonohydrate with hydrazine monohydrate was realized under reflux in methanol and a few drops of glacial acetic acid were added to give the (intermediate) 2-(1-hydrazono-ethyl)-benzene-1, 3, 5-triol, which reacted with salicylaldehyde in methanol to give a new type (NO) ligand [HL][(2-1-[(2-hydroxy-benzyliidene)-hydrazono]-ethyl) benzene-1, 3, 5-triol. The ligand was reacted with Mcl.(where M-Co, Ni, Cu, and Zn) under reflux in methanol with (l: 1) ratio to give complexes of the general formula [M (HL)]. All compounds have been characterized by spectroscopic methods I" H NMR, IR. UV-Vis, HPLC, atomic absorption] microanalysis along with conductivity measurement. From the above data the proposed mo
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreEffective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen
The present paper stresses the direct effect of the situational dimension termed as “reality” on the authors’ thoughts and attitudes. Every text is placed within a particular situation which has to be correctly identified by the translator as the first and the most important step for a good translation. Hence, the content of any word production reflects some part of reality. Comprehending any text includes comprehending the reality’s different dimensions as reflected in the text and, thus illuminating the connection of reality features.
Аннотация
Исследование под названием ((«Понимание реальности» средство полно
... Show More