New Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N,N'E,N,N'E)-N,N'-(cyclohexane-1,3-diylidene)bis(4- fluoro-3-(1H-tetrazol-5-yl)aniline) (L1). The reaction of these ligands with the appropriate metal ions gave polymeric metal complexes of the formulae {[M2(L)]Cl}n and [M(L1)Cl2]n (where M = Co(II), Ni(II) and Cd(II)). A range of techniques were used to confirm the entity of ligands and their complexes. The formation of ligands and mode of complexation and geometrical structure of the title polymeric complexes were verified using FTIR, electronic spectra, NMR, ESMS, magnetic susceptibility, micro-elemental analysis, metal content, chloride content and conductance. The analytical and spectroscopic data indicated the formation of four-coordinate complexes, with a tetrahedral geometry for Co(II) and Cd(II), and square planer for Ni(II) in L- and L1 complexes. Biological evaluation of ligands and their polymeric complexes against gram-positive bacteria (G+), Bacillus stubtili, Staphylococcus aureus, and gram-negative bacteria (G−), Escherichia coli and Pseudomonas aeruginosa, showed ligands and their polymeric metal complexes have a good effect on the screened bacteria.
A new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity ag
... Show MoreThree of imide intermediate products were synthesized by reacting of phthalic anhydride with glycine (2a), and tetrachloro phthalic anhydride with glycine , (S)-2-[(tert-Butoxycarbonyl)amino]-3-aminopropionic acid ( 2b,c) respectively in dry toluene with azeotropic removal of water using Dean- stark apparatus then carboxyl functional group activated by refluxing with thionyl chloride, the resulted acid chloride (3a-c) were reacted with different amine (5-flourouracil, 4-chloroaniline, 4-bromoaniline, 2-amino thiazole, and pyrrolidine) (4a-e) , the resulted products consider as
... Show MoreTo synthesize new hydrazone derivatives of naproxen with enhanced anti-inflammatory activity and devoid the ulcerogenic side effects. Hydrazones were synthesized by conjugation of naproxen hydrazide with seven natural and synthetic aldehyde and ketone by using glacial acetic acid as catalyst. The synthesis has been carried out following simple methodology in excellent isolated yields.The structure of the synthesized derivatives has been characterized by elemental microanalysis (CHN), FTIR Spectroscopy, and other physicochemical properties.The anti- inflammatory activity of the synthesized compounds was evaluated in vivo using the egg-white induced edema model in rats, and the results of the biological assay was found to be comparable to Nap
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe ligand 4-(2-aminmo-5-nitro-phenylazo)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one derived from 4-aminoantipyrine and 4-nitroaniline was synthesized. The synthesized ligand was characterized by 1HNMR, FT-IR, UV-Vis spectra and (C.H.N) analysis. Complexes of (YIII and LaIII ) with the ligand were prepared in aqueous ethanol with a 1:2 M:L ratio and at optimum pH. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis spectra,(C.H.N) analysis and conductivity measurement. The stoichiometry of complexes was studied by the mole ratio and job methods. A concentration range (1×10-4 - 3×10-4 M) obeyed Beer's law, the complex solutions show high values of molar absorption. On the basis of physicochemical
... Show MoreThe ligand 4-(2-aminmo-5-nitro-phenylazo)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one derived from 4-aminoantipyrine and 4-nitroaniline was synthesized. The synthesized ligand was characterized by 1HNMR, FT-IR, UV-Vis spectra and (C.H.N) analysis. Complexes of (YIII and LaIII ) with the ligand were prepared in aqueous ethanol with a 1:2 M:L ratio and at optimum pH. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis spectra,(C.H.N) analysis and conductivity measurement. The stoichiometry of complexes was studied by the mole ratio and job methods. A concentration range (1×10-4 - 3×10-4 M) obeyed Beer's law, the complex solutions show high values of molar absorption. On the basis of physicochemical
... Show MoreThe new liganed Schiff base named [(E)-3-hydroxy-4-((3,4,5- trimethoxybenzylidene)amino) naphthalene-1- sulfonic acid] was synthesized from 3,4,5-trimethoxybenzyldehyde and 1-amino-2-aphthol-4- sulfonic acid in equal molar ratio. A series of new metal complexes' of the common molecular formulation [M(L)2(H2O)2].H2O are synthesized and characterized by IR, UV–Vis spectra, mass spectra, atomic absorption, elemental analyses, chloride content, magnetic susceptibility and conductivity measurements as well as thermo gravimetric analysis (TGA, DSC). Consistent with results of the magnetic and spectral studies, the advised geometrical structures for all of the prepared complexes have been octahedral formula
The work involves synthesis of new Schiff bases ( [V]a, b and [VI]a, b), pyrazoles[VII]a, b and pyrazolines[VIII]a, b derivatives containing isoxazoline unit starting with chalcones. 4bromoacetophenone was reacted with 4-hydroxybenzaldehyde or 4-hydroxyacetophenone was reacted with 4-bromobenzaldehyde in basic medium to give chalcone by Claisen-Schemidt reaction. The chalcons [I]a, b was reacted with hydroxylamine hydrochloride to form isoxazolines [II]a, b. which were reacted with ethyl chloro acetate in basic medium to get ester compounds[III]a, b .The condensation new ester[III]a, b with hydrazine hydrate80% yieldedacid hydrazide [IV]a, b.The later compound refluxing with 4-substituted benzaldehyde in dry benzene to
... Show More