Optimization of well placement plays a considerable role in the production and maximizing the net present value of the investment of oil field developments. However, the application of the optimization techniques in well placement developments is so complicated because many decision variables, objective functions, and constraints are involved in the well placement optimization case. Furthermore, many computational techniques; conventional and non-conventional, have been utilized to optimize well placement operations. This study displays the advancement of the optimization methods applied in the well placement. Subsequently, the study assorted the applied optimization methods, and it demonstrates the restriction and the range of implementation of each method to gain an appropriate degree of precision and simulation run time. Finally, the paper provides an inclusive review of the well placement optimization methods utilized in the petroleum engineering domain from conventional methods to modern artificial intelligence methods.
The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreIn this paper, a new class of non-convex functions called semi strongly (
Water pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreContents IJPAM: Volume 116, No. 3 (2017)
This study was aimed to develop an optimized Dy determination method using differential pulse voltammetry (DPV). The Plackett-Burman (PB) experimental design was used to select significant factors that affect the electrical current response, which were further optimized using the response surface method-central composite design (RSM-CCD). The type of electrolyte solution and amplitude modulation were found as two most significant factors, among the nine factors tested, which enhance the current response based on PB design. Further optimization using RSM-CCD shows that the optimum values for the tw
... Show More