Optimization of well placement plays a considerable role in the production and maximizing the net present value of the investment of oil field developments. However, the application of the optimization techniques in well placement developments is so complicated because many decision variables, objective functions, and constraints are involved in the well placement optimization case. Furthermore, many computational techniques; conventional and non-conventional, have been utilized to optimize well placement operations. This study displays the advancement of the optimization methods applied in the well placement. Subsequently, the study assorted the applied optimization methods, and it demonstrates the restriction and the range of implementation of each method to gain an appropriate degree of precision and simulation run time. Finally, the paper provides an inclusive review of the well placement optimization methods utilized in the petroleum engineering domain from conventional methods to modern artificial intelligence methods.
In the past two decades, maritime transport traffic has increased, especially in the case of container flow. The BAP (Berth Allocation Problem) (BAP) is a main problem to optimize the port terminals. The current manuscript explains the DBAP problems in a typical arrangement that varies from the conventional separate design station, where each berth can simultaneously accommodate several ships when their entire length is less or equal to length. Be a pier, serve. This problem was then solved by crossing the Red Colobuses Monkey Optimization (RCM) with the Genetic Algorithm (GA). In conclusion, the comparison and the computational experiments are approached to demonstrate the effectiveness of the proposed method contrasted with other
... Show MoreBioavailability is the objective for an optimum formulation. The target of the analysis is to maximize both the fluidity and disintegration profile of class II weakly compounds that are water-soluble. Anti-dyslipidemia drug rosuvastatin calcium (RC) (bioavailability 20%) through formulating as nanofibers (NFs) using electrospinning (ES) technology. Twenty formulas were prepared, and different polymers and polymer combinations with various concentrations were used such as polyethylene oxide (PEO) polyvinyl pyrrolidine (PVPK-30), and hydroxypropyl methylcellulose (HPMC). Three distinct groups of maximum parameters, including polymeric solution, electrospinning method, and ambient parameter, are capable of influencing the creation alon
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreGaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db
... Show MoreGaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db
... Show MoreTo ensure that a software/hardware product is of sufficient quality and functionality, it is essential to conduct thorough testing and evaluations of the numerous individual software components that make up the application. Many different approaches exist for testing software, including combinatorial testing and covering arrays. Because of the difficulty of dealing with difficulties like a two-way combinatorial explosion, this brings up yet another problem: time. Using client-server architectures, this research introduces a parallel implementation of the TWGH algorithm. Many studies have been conducted to demonstrate the efficiency of this technique. The findings of this experiment were used to determine the increase in speed and co
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show More