A linear and nonlinear theoretical and experimental aeroelastic investigation of a wing-flap-tab typical section model undergoing two-dimensional incompressible airflow is described. The linear flutter velocity (LFV) and frequency are predicted using linear analysis. Then a freeplay structural nonlinearity is considered in the tab. The structural equations of motion have been coupled with Theodorsen aerodynamic theory to produce the theoretical aeroelastic model which is analyzed by a state space method to predict the LFV and flutter frequency. Linear piecewise function has been used to introduce the tab spring stiffness in the freeplay state. The ground vibration test is used to measure the model structural dynamic characteristics. Then the experimental aeroelastic model is placed in a low speed wind tunnel to measure the LFV and the limit cycle oscillation (LCO) of the physical model induced by freeplay. The root main square amplitude value of the pitch, flap pitch, tab pitch and plunge degrees of freedom of the tab nonlinearities are normalized with freeplay gap size to produce a bifurcation diagram with normalized airflow velocity as the bifurcation parameter. The results show that the LCO frequency jumps from low to high frequency at a yet higher flow velocity. At the same flow velocity, the pitch and plunge motion response amplitudes drop while the flap pitch and tab pitch degrees of freedom response amplitude increase. In general the experimental measured LCO is more complicated than the theoretically calculated LCO in terms of the harmonic content of the response. On the other hand there is good agreement between the theoretical and experimental result of the linear system as well the LCO for the tab freeplay nonlinearities
Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical
... Show MoreA simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.
The method is utilized to predict
... Show MoreAn innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.
... Show MoreThe multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i
... Show MoreThis research aims to show the sight at the importance of the private banking sector in Iraq and its role in financing of the investment projects , of the ability of Central Bank's decision to increase the minimum limit of capital for private banks to provide support to the economic activity and the development in Iraq. In addition to illustrate the importance of the capital increase, with a, and taking into notice the most important determinants that can stand in front of these banks in the beginning of the decision implementation, which in turn can lead to the most important proceedings that can contribute in the support of banks to implementation the decision. Also, the research has highlighted the most important ways through wh
... Show More