A cross-sectional study was conducted on 80 type 2 diabetic patients aged 20-60 years in Baghdad and 20 non diabetic persons as controls. Laboratory assessment of glucose related parameters; Fasting blood sugar (FBS), Glycated hemoglobin (HbA1c), Insulin and Insulin resistance (IR), renal function test; Blood urea, serum creatinine, Calcium (Ca) and Phosphorus (P), Calcium regulating hormones; Parathyroid hormone (PTH), calcitonin and vitamin D, cytokines, Adiponectin and Tumor necrosis factor (TNF-α) and comparison these parameters between patients and controls. The results: a high significant (p˂0.01) increase in FBG level in the patients (211.34 ± 11.20 mg/dl) as compared with control (85.89 ± 3.07 mg/dl). A high significant (p˂0.01) increase in HbA1c in the patients (8.89 ± 0.24 %) than to control (4.813 ± 0.09 %), insulin and HOMA2-I.R levels showed a high significant (P< 0.01) increase of patients as compared to control (49.87 ± 15.78 vs. 12.16 ± 2.57 μIU/ml), (28.49 ± 10.77vs. 2.618 ± 0.56 μIU/ml) respectively. A high significant (P<0.01) increase in B. urea and S. creatinine in the T2DM patients (35.77±1.13 mg/dl and 0.84± 0.04 mg/dl, respectively) and control (30.04±0.69 mg/dl and 0.60±0.03 mg/dl, respectively). The calcium level (8.33±0.06 mg/dl vs. 8.59±0.09 mg/dl) shows a significant (P<0.05) decrease in patients. No significant differences in PTH and calcitonin levels between patients and control, vit. D level, there was a high significant (P<0.01) decrease in patients (16.27 ± 0.55 ng/ml) and control (21.42 ± 2.15 ng/ml). Adiponectin was lower significantly (P<0.05) in patients (11.23 ± 0.40 μg/ml) than in control (12.38 ± 0.61 μg/ml), while there was no significant deference between the patients and control in TNF-α. Conclusion: Development of T2DM characterized by hyperglycemia, hyperinsulinemia accompanied with elevated levels of HbA1c and IR, hyperglycemia is the major cause of progressive renal damge, and the decreased levels of vitamin D in the diabetic patients suggest that altered vitamin D and calcium homeostasis may play role in the development of T2DM.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
Abstract
The aim of the present work is to control of metal buried corrosion by alteration the media method. This method depended on the characteristics of each media. The corrosion rates in different media (soil, sand, porcelanite stone and gravel) for specimens of low carbon steel were measured by two methods weight loss method and polarization method, weight loss measured by buried specimens in these medias separately for 90 days. The polarization method includes preparing of specimen and salt solutions have electrical resistivity equivalent electrical resistivity of these media. The corrosion rate of two method results in (soil > sand> porcelainte stone> gravel). The lower corrosion rate happene
... Show MorePolyacetal was synthesized from the reaction of PVA with para-methyoxy benzaldehyde. Polymer metal complexwas prepared by reaction with Cu, polymer blend with Chitosan was prepared through the technique of solution casting method.All prepared compounds have been characterized through FT-IR, DSC, SEM as well as the Biological activity. The FT-IR results indicated the formation of polyacetal. The DSC results indicated the thermal stability regarding prepared polymer, polymermetal complex and Chitosan polymer blends. Antibacterial potential related to synthesized polyacetal, its metal complex andChitosan blend against four types of bacteria namely, Staphylococcus aureas, Psedomonas aeruginosa, Bacillus subtilis, Escherichia coli was examined a
... Show MoreBackground: Radiotherapy, is therapy using ionizing radiation in order to deliver an optimal dose of either particulate or electromagnetic radiation to a particular area of the body with minimal damage to normal tissues. The source of radiation may be outside the body of the patient (external beam irradiation) or it may be an isotope that has been implanted or instilled into abnormal tissue or a body cavity. Called also radiotherapy. The aim of work studies the relationship between the depth dose and the high photon xray energies (6MeV and 10MeV). Patients and methods: in our work, we studied the dose distribution in water phantom given at different depths (zero-18) cm deep at1cm intervals treated with different field size (5×5-,10×1
... Show MoreIn this article the unsteady magnetohydrodynamics oscillating flow of third order fluid with free stream velocity is proposed. It is found that the motion equation is controlled by five dimensionless parameters namely the coecostic parameter 4, viscoelostic parameter ?,acceleration/deceleration c,suction/blowing d and material constants ? . The effect of each of these parameters upon the velocity distribution is analysised
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
New evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show More
