A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 µg∙mL-1 for Ciprofloxacin and 2 to 22 µg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) were measured with first derivative method. The LOD and LOQ were found as 0.45 µg∙mL-1 and 1.50 µg∙mL-1 for Ciprofloxacin and 0.68 µg∙mL-1 and 2.28 µg∙mL-1 for Isoniazid, respectively. Accuracy and precision were determined by measuring the relative standard deviation and recoveries. The results also showed that the proposed method was successfully applied for direct analysis of ciprofloxacin and isoniazid in the tablet samples
A simple, cheap, fast, accurate, Safety and sensitive spectrophotometric method for the determination of sulfamethaxazole (SFMx), in pure form and pharmaceutical dosage forms. has been described The Method is based on the diazotization of the drug by sodium nitrite in acidic medium at 5Cº followed by coupling with salbutamol sulphate (SBS) drug to form orange color the product was stabilized and measured at 452 nm Beer’s law is obeyed in the concentration range of 2.5-87.5 ?g ml-1 with molar absorptivity of 2.5x104 L mole-1 cm-1. All variables including the reagent concentration, reaction time, color stability period, and sulfamethaxazole /salbutamol ratio were studied in order to optimize the reaction conditions. No interferences were
... Show MoreA simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.
Simple and sensitive kinetic methods are developed for the determination of Paracetamol in pure form and in pharmaceutical preparations. The methods are based on direct reaction (oxidative-coupling reaction) of Paracetamol with o-cresol in the presence of sodium periodate in alkaline medium, to form an intense blue-water-soluble dye that is stable at room temperature, and was followed spectrophotometriclly at λmax= 612 nm. The reaction was studied kinetically by Initial rate and fixed time (at 25 minutes) methods, and the optimization of conditions were fixed. The calibration graphs for drug determination were linear in the concentration ranges (1-7 μg.ml-1) for the initial rate and (1-10 μg.ml-1) for the fixed time methods at 25 min.
... Show MoreAn Indirect simple sensitive and applicable spectrofluorometric method has been developed for the determination of Cefotaxime Sodium (CEF), ciprofloxacin Hydrochloride (CIP) and Famotidine (FAM) using reaction system bromate-bromide and acriflavine (AF) as fluorescent dye. The method is based on the oxidation of drugs with known excess bromate-bromide mixture in acidic medium and subsequent determination of unreacted oxidant by quenching fluorescence of AF. Fluorescence intensity of residual AF was measured at 528 nm after excitation at 402 nm. The fluorescence-concentration plots were rectilinear over the ranges 0.1-3.0, 0.05-2.6 and 0.1-3.8 µg ml-1 with lower detection limits of 0.013, 0.018 and 0.021 µg ml-1 an
... Show MoreSimple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show MoreIt is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec
... Show MoreThe development of analytical techniques is required for the accurate and comprehensive detection and measurement of antibiotic contamination in the environment. Metronidazole is a common antibacterial, antiprotozoal, and antibiotic drug. Thiamine is a vital biological and medicinal ingredient that is involved in the metabolism of proteins, fats, and carbohydrates that produce energy. The study aims to identify the drugs in a mixture without separation to provide more information to confirm if a drug is present in a combination. Metronidazole and thiamine are two examples of pharmaceutical and environmental samples that can be identified using spectrophotometric techniques because of their low cost and simplicity of use. The operati
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show More