Preferred Language
Articles
/
5Rb_lYcBVTCNdQwCxVbP
Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks
Abstract<p>Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data communication processes with sink node. As such, failure in communicating nodes would lead to a significant network void-holes problem. Considering the limited energy resources of nodes in UWSNs along with the heavy load of CHs in the routing process, this paper proposes a void-holes aware and reliable data forwarding strategy (VHARD-FS) in a proactive mode to control data packets delivery from CH nodes to the sink in UWSNs. In the proposed strategy, each CH node is aware of its neighbor’s performance ranking index to conduct a reliable packet transmission to the sink via the most energy-efficient route. Extensive simulation results indicate that the VHARD-FS outperforms existing routing approaches while comparing energy efficiency and network throughput. This study helps to effectively alleviate the resource limitations associated with UWSNs by extending network life and increasing service availability even in a harsh underwater environment.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
Scopus (34)
Crossref (19)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Applied Soft Computing
Scopus (240)
Crossref (198)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Linguistic Fuzzy Trust Model over Oscillating Wireless Sensor Networks

Simulation  of  the  Linguistic  Fuzzy Trust  Model  (LFTM)  over  oscillating  Wireless  Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
On Gradient Descent Localization in 3-D Wireless Sensor Networks

Localization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Energy Consumption Analyzing in Single hop Transmission and Multi-hop Transmission for using Wireless Sensor Networks

Wireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 28 2019
Journal Name
Soft Computing
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Scopus (56)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2023
Journal Name
Wasit Journal Of Computer And Mathematics Science
Security In Wireless Sensor Networks Based On Lightweight Algorithms : An Effective Survey

At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena

... Show More
Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Sensors
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages

... Show More
Scopus (23)
Crossref (15)
Scopus Clarivate Crossref
View Publication Preview PDF