Removal of heavy metal ions such as, cadmium ion (Cd 2+) and lead ion (Pb 2+) from aqueous solution onto Eichhornia (water hyacinth) activated carbon (EAC) by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO2) as the activating agents were investigated. The Eichhornia activated carbon was characterized by Brunauer Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) techniques. Whereas, the effect of adsorbent dosage, contact time of pH, and metal ion concentration on the adsorption process have been investigated using the batch process technique. The kinetic data of the adsorption were fitted with the pseudo-first order and, pseudo-second-order models as well as Langmuir and Freundlich isotherm models. The results were found to be well fitted with pseudo-second-order and Freundlich models. The results also reveal that activated carbon derived from Eichhornia was an efficient adsorbent for the adsorptive removal of heavy metal ions from solutions whereas, the maximum sorption capacities of the Pb 2+ and Cd 2+ ions were detected as 102 and 49.5 (mg/g), respectively.
Formation of emulsions during oil production is a costly problem, and decreased water content in emulsions leads to increases productivity and reduces the potential for pipeline corrosion and equipment used. The chemical demulsification process of crude oil emulsions is one of the methods used for reducing water content. The demulsifier presence causes the film layer between water droplets and the crude oil emulsion that to become unstable, leading to the accelerated of water coalescence. This research was performed to study the performance of a chemical demulsifier Chimec2439 (commercial) a blend of non-ionic oil-soluble surfactants. The crude oils used in these experiments were Basrah and Kirkuk Iraqi crude oil. These
... Show MoreAbstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerat
... Show MoreThis paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure
... Show MoreA new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
Density functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreThe coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17- tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These st
... Show MoreSchiff Base And Ligand Metal Complexes of Some Amino Acids and Drug