Preferred Language
Articles
/
5EIrRZoBMeyNPGM3db89
Sustainable Leaf Plant Disease Based on Salp Swarm Algorithm for Feature Selection
...Show More Authors

Sustainable plant protection and the economy of plant crops worldwide depend heavily on the health of agriculture. In the modern world, one of the main factors influencing economic growth is the quality of agricultural produce. The need for future crop protection and production is growing as disease-affected plants have caused considerable agricultural losses in several crop categories. The crop yield must be increased while preserving food quality and security and having the most negligible negative environmental impact. To overcome these obstacles, early discovery of satisfactory plants is critical. The use of Advances in Intelligent Systems and information computer science effectively helps find more efficient and low-cost solutions. This paper proposed a multiclass classification model that aims to detect diseases in three types of fruit using the leaves plant images dataset. These three types of fruit are (Apple, Cherry, and Strawberry) where Apples have three disease dataset categories (Apple Scab, Black Rot, and  Cedar Rust) as well as healthy apple dataset, Cherry have Powdery Mildew disease dataset category and healthy dataset, and Strawberry have leaf Scorch disease dataset category and healthy dataset. These datasets are based on the Kaggle website. These multiclass classifications need several steps of processing; the first step is preprocessing the dataset by resizing all images to the same size, segmentation, and removing noise; then, feature extraction from color and texture features; the next step is feature selection to find optimal features by using the Salp Swarm algorithm (SSA); and classification by using machine learning models (Random Forest), (CatBoost), and (XGBoost). In the final step, evaluation of the performance was used to select several matrices: Accuracy, precision, recall, and F1-score.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Field Programmable Gate Array (FPGA) Model of Intelligent Traffic Light System with Saving Power
...Show More Authors

In this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational req

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Applying Quran Security and Hamming CodesFor Preventing of Text Modification
...Show More Authors

The widespread of internet allover the world, in addition to the increasing of the huge number of users that they exchanged important information over it highlights the need for a new methods to protect these important information from intruders' corruption or modification. This paper suggests a new method that ensures that the texts of a given document cannot be modified by the intruders. This method mainly consists of mixture of three steps. The first step which barrows some concepts of "Quran" security system to detect some type of change(s) occur in a given text. Where a key of each paragraph in the text is extracted from a group of letters in that paragraph which occur as multiply of a given prime number. This step cannot detect the ch

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A Study of Apelin-36 and GST Levels with Their Relationship to Lipid and Other Biochemical Parameters in the Prediction of Heart Diseases in PCOS Women Patients
...Show More Authors

This work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More