This study evaluated the structural changes of enamel treated by the Regenerate system and carbon dioxide (CO2) laser against acid challenge. Thirty human enamel slabs were prepared and assigned into three groups: Group I: untreated (control); Group II: treated with the Regenerate system; and Group III exposed to CO2 laser. All specimens were subjected to an acid challenge (pH 4.5–7.0) for 14 days. Specimens were evaluated and compared at 120 points using five Raman microspectroscopic peaks; the phosphate vibrations ν1, ν2, ν3, and ν4 at 960, 433, 1029, and 579 cm−1, respectively, and the carbonate at 1070 cm−1, followed by Vickers microhardness test. The ratio of carbonate to phosphate was correlated to the equivalent microhardness numbers. The intensities of phosphate peaks ν1, ν2, and ν4 were reduced in all groups post-acid challenge, while the carbonate and ν3 were significantly increased (p < 0.000). Surfaces treated by Regenerate exhibited higher peak intensity of phosphate and carbonate before and after pH-cycling (p < 0.05). The mineral content in enamel had a direct effect on tissue microhardness, and the CO2-lased surfaces showed a reduced carbonate content and higher microhardness values. Both approaches induced surface changes that can protect enamel against acid challenge resulting in a significant benefit for dental healthcare.
In this research, the effect of changing the flood level of Al-Shuwaija marsh was studied using the geographic information systems, specifically the QGIS program, and the STRM digital elevation model with a spatial analysis accuracy of 28 meters, was used to study the marsh. The hydraulic factors that characterize the marsh and affecting on the flooding such as the ranks of the water channels feeding the marsh and the degree of slope and flat areas in it are studied. The area of immersion water, the mean depth, and the accumulated water volume are calculated for each immersion level, thereby, this study finds the safe immersion level for this marsh was determined.
Flow of water under concrete dams generates uplift pressure under the dam, which may cause the dam to function improperly, in addition to the exit gradient that may cause piping if exceeded a safe value. Cutoff walls usually used to minimize the effect of flow under dams. It is required to
1)minimize the flow quantity to conserve water in the reservoir, it is also required to
2)minimize the uplift pressure under the dam to maintain stability of the dam, and it is required to
3) minimize the exit gradient to prevent quick condition to occur at the toe of the dam where piping may occur and may cause erosion of the soil. Varying the angle of cutoff walls affects its influence on the factors aforementioned that are required to
... Show MoreThe aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
Background: obesity is a major global health problem with more than 200 million obese men and almost 300 million obese women. Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and has multiple pathological actions including control of appetite, sleep wake cycle and metabolic syndrome.
Aim: to estimate the effect of melatonin supplements on obese patients on a calorie restricted diet in comparison to patients on lifestyle measures only in the form of weight loss, waist circumference and sleep quality.
Subjects and Method: one hundred patients with body mass index > 24 were collected, fifty patients were starte
... Show MoreIn the present study, MIG welding is carried out on low carbon steel type (AISI 1015) by using electrode ER308L of 1.5mm diameter with direct current straight polarity (DCSP). The joint geometry is of a single V-butt joint with one pass welding stroke for different plate thicknesses of 6, 8, and 10 mm. In welding experiments, AISI 1015 plates with dimensions of 200×100mm and edge angle of 60o from both sides are utilized. In this work, three main parameters related to MIG welding process are investigated, which are welding current, welding speed, heat input and plate thickness, and to achieve that three groups of plates are employed each one consists of three plates. The results indicate that increasing the weld heat input (t
... Show MoreVitrifications process one of the important methods to immobilize nuclear waste. In this research nuclear waste (Strontium Oxides) with molecular weight (5%) was immobilized by vitrification methods in two types of borosilicate glass (c-type) which are glass and glass-ceramics. To investigate the physical, chemical and mechanical properties of glass and glass-ceramic after immobilize nuclear waste these samples irradiated by gamma ray radiation. Co-60 was used as gamma a irradiation with dose rate 0.38 kGy/hr for different period of time. It’s found that gamma radiation affected the glass and glass-ceramic properties. From phase analysis by the x-ray diffraction for glass-ceramic samples proved that at doses 343kGy change the cry
... Show More