This study evaluated the structural changes of enamel treated by the Regenerate system and carbon dioxide (CO2) laser against acid challenge. Thirty human enamel slabs were prepared and assigned into three groups: Group I: untreated (control); Group II: treated with the Regenerate system; and Group III exposed to CO2 laser. All specimens were subjected to an acid challenge (pH 4.5–7.0) for 14 days. Specimens were evaluated and compared at 120 points using five Raman microspectroscopic peaks; the phosphate vibrations ν1, ν2, ν3, and ν4 at 960, 433, 1029, and 579 cm−1, respectively, and the carbonate at 1070 cm−1, followed by Vickers microhardness test. The ratio of carbonate to phosphate was correlated to the equivalent microhardness numbers. The intensities of phosphate peaks ν1, ν2, and ν4 were reduced in all groups post-acid challenge, while the carbonate and ν3 were significantly increased (p < 0.000). Surfaces treated by Regenerate exhibited higher peak intensity of phosphate and carbonate before and after pH-cycling (p < 0.05). The mineral content in enamel had a direct effect on tissue microhardness, and the CO2-lased surfaces showed a reduced carbonate content and higher microhardness values. Both approaches induced surface changes that can protect enamel against acid challenge resulting in a significant benefit for dental healthcare.
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MoreIn this work the analysis of laser beam profile system ,using a two dimensional CCD (Charge Coupled Device) arrays, is established. The system is capable of producing video graphics that give a two dimensional image of laser beam. The video graphics system creates color distribution that represent the intensity distribution of the laser beam or the energy profile of the beam. The software used is capable of analyzing and displaying the profile in four different methods that is , color code intensity contouring , intensity shareholding, intensity cross section along two dimension x-y, and three dimensional plot of the beam intensity given in the same display.
Background: Leukemia is a broad term given to a group of malignant diseases characterized by diffuse replacement of bone marrow with proliferating leukocyte precursors. Chemotherapy has been increasingly used to treat malignant conditions. The systemic sequelae as a result of these immunosuppressive techniques induce many oral and dental complications. This study was conducted to evaluate the effect of chemotherapy on oral health status and activity of salivary alkaline phosphates enzyme in patients with acute lymphocytic leukemia. Materials and methods: The study groups included 28 patients with acute lymphocytic leukemia; they were under chemotherapy, aged 20-25 year old. The control group includes healthy subjects matching with study
... Show MoreThe project has been described the design and construction of a reliable optical testing platform used for evaluate the reflectivity of metal surfaces treated with special paintings required for laser beam attenuation. The platform comprises an Nd-YAG laser system which has been designed and fabricated with specifications to be compatible with their corresponding in laser range finder transmitters used for various applications. The reflectivity of various attenuating paintings, at different detection angles, has been observed. Moreover, the variation of the reflected energy with painting type and metal type to be painted has been studied experimentally. Results illustrated the existence of a definite angle, at which the reflectivity was max
... Show MoreThe purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef
The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes. Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2 gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r
... Show MoreHypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nano
... Show More