Asthma is a chronic inflammatory disease that involves the narrowing of the lung airways and excessive mucus production. Resveratrol (RES), a polyphenolic stilbene, is known to control asthmatic attacks via different molecular mechanisms. However, no studies have examined the effect of resveratrol on the microbiome in the ovalbumin (OVA)-induced asthma mouse model. In this study, we induced asthma in BALB/c mice by injecting OVA followed by 7 days treatment with RES. Plethysmography showed that the expiratory resistance in the lung tissue was significantly reduced in the RES treated group, while mean volume, peak expiratory flow, and frequency of respiration was increased. Histopathological examination of the lungs of the RES-treated group showed significant reduction in inflammatory cell infiltration and led to restoration of normal lung tissue architecture. In addition, there were significant increases in the expression of the genes encoding tight-junction molecules (claudin-1 and cadherin-18) in the RES-treated group. We performed 16S rRNA microbial analysis of cecal flushes and pulmonary tissues, which showed that RES treatment alters the gut microbiome by significantly increasing the level of Bacteroides acidifaciens spp. compared to disease controls. In addition, there was a significant increase in Akkermansia muciniphila (AM) species within the lungs after RES treatment. AM is a gram-negative, non-spore-forming bacterium known to induce mucus degradation. Since asthma is characterized by an increase in mucus in the lungs, we concluded that RES improves asthma in OVA-induced mouse model by significantly increasing AM and preventing mucus build-up in the lungs.
In the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show More