Preferred Language
Articles
/
5BeP5I8BVTCNdQwCwn91
Disc damage likelihood scale recognition for Glaucoma detection
Abstract<p>Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma disease with 70% percentage; moreover, when the dimensions of both Optic Disc(OD) and Optic Cup(OC) were used as additional features the accuracy rate raised to 91%.</p>
Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
An Investigation into the Behavior of Disc Blake Wear

A real method of predication brake pad wear ,could lead to substantiol economies of time and money. This paper describes how such a procedure has been used and gives the results to establish is reliability by comparing the predicted wear with that which actually occurs in an existing service. The experimental work was carried out on three different commercial samples ,tested under different operation conditions (speed,load,time...etc)using a test ring especially modified for this purpose. Abrasive wear is mainly studied , since it is the type of wear that takes place in such arrangements. Samples wear tested in presences of sand or mud between the mating surfaces under different operational conditions of speed, load and braking time .Mec

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
A new Cumulative Damage Model for Fatigue Life Prediction under Shot Peening Treatment

 Abstract

In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Maximum Likelihood Method And Bayesian Method For Estimating Some Non-Homogeneous Poisson Processes Models

Abstract

The Non - Homogeneous Poisson  process is considered  as one of the statistical subjects which had an importance in other sciences and a large application in different areas as waiting raws and rectifiable systems method , computer and communication systems and the theory of reliability and many other, also it used in modeling the phenomenon that occurred by unfixed way over time (all events that changed by time).

This research deals with some of the basic concepts that are related to the Non - Homogeneous Poisson process , This research carried out two models of the Non - Homogeneous Poisson process which are the power law model , and Musa –okumto ,   to estimate th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Sun Jul 29 2018
Journal Name
Iraqi Journal Of Science
Cuneiform Tablets Image Preprocessing Proposed Algorithms Techniques for Pattern Recognition

Cuneiform symbols recognition represents a complicated task in pattern recognition  and image analysis as a result of problems that related to cuneiform symbols like distortion and unwanted objects that associated with applying Binrizetion process like spots and writing lines. This paper aims to present new proposed algorithms to solve these problems for reaching uniform results about cuneiform symbols recognition that related to (select appropriate Binerized method, erased writing lines and spots) based on statistical Skewness measure, image morphology and distance transform concepts. The experiment results show that our proposed algorithms have excellent result and can be adopted

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
Crossref (24)
Clarivate Crossref
View Publication
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
comparing three estimators of fuzzy reliability for one scale parameter rayleigh distribution

Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu

... Show More
Scopus (1)
Scopus