Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning models for a variety of tasks under the control of a unified architecture for each proposed model.
This research aims to identify the level of extension administration performance under comprehensive quality standards from the perspective of the working staff in agricultural extension at the level of the general extension body and agricultural directorates and agricultural division.this was to identify the extension administration performance under comprehensive quality standards from the perspective of vegetables growers , random sample was selected from the central region governorates Baghdad , Diyala , Babel , karbala and Al-Najaf , a random sample from the workers in the general body numbered 56 employee , sample of staff working in agricultural extension was selected at the level of agricultural directorates in proportion
... Show MoreThe Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Be
... Show MoreBACKGROUND: Mental health problems are reflected and linked to human behavior in many aspects. Medical students are susceptible to a wide variety of events that compromise their mental well-being, social life as well as their academic achievements. AIM: This study aimed to find the impact of social support on medical students’ behavior in Iraq via assessing their depression, anxiety, and stress status. METHODS: A cross-sectional online survey-based study targeted all medical students in Iraq. The employed questionnaires covered mental health status of participants by evaluating their perceptions of depression, anxiety, and stress using. Data were analyzed using the Statistical Analysis System. RESULTS: The study revealed a signifi
... Show MoreThe dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show More