The term "tight reservoir" is commonly used to refer to reservoirs with low permeability. Tight oil reservoirs have caused worry owing to its considerable influence upon oil output throughout the petroleum sector. As a result of its low permeability, producing from tight reservoirs presents numerous challenges. Because of their low permeability, producing from tight reservoirs is faced with a variety of difficulties. The research aim is to performing hydraulic fracturing treatment in single vertical well in order to study the possibility of fracking in the Saady reservoir. Iraq's Halfaya oil field's Saady B reservoir is the most important tight reservoir. The diagnostic fracture injection test is determined for HF55using GOHFER software. Models for petrophysics and geology were calibrated using the diagnostic fracture injection test results after the petrophysical and geomechanical parameters of the rock have been determined. The HF55 vertical well, which penetrates the Saady reservoir, has well logs that have been used to evaluate the petrophysical and geomechanical parameters. These estimates have been supported by findings from the diagnostic fracture injection test through the utilization of standard equations and correlations. The findings of the diagnostic fracture injection test, often known as the diagnostic fracture injection test, are very compatible with the findings of the well logs. The diagnostic fracture injection test pre-falloff test event was examined to determine the instantaneous shut-in pressure and fracture gradient. In the meantime, Closure pressure, process zone stress, fracturing fluid efficiency, closure gradient, critical fissure opening pressure, storage correction factor, permeability, and pressure-dependent leak-off coefficient were all determined using the G function on plot. With the help of a specific software, the petrophysical and geomechanical properties of a single vertical well [HF55] was found. Saady B reservoir's upper and lower sections, along with it are therefore predicted to have the full range of petrophysical and geomechanical features. With the use of DFIT analysis, these features serve as the foundation for developing fracturing models.
Objective: To evaluate the clinical significance of open diagnostic testicular biopsy as prognostic predictor of
successful sperm retrieval among azoospermic infertile patients.
Design: Prospective study.
Setting: Infertility clinic and assisted reproduction unit at the institute of embryo research and infertility
treatment, Baghdad University.
Patients: Sixty infertile azoospermic patients.
Intervention: Pieces of testicular tissue taking during open diagnostic multiple bilateral testicular biopsies was
prepared for histological examination and grouped according to well-defined histopathological patterns.
Measurement of testicular size and serum reproductive hormones (FSH, LH, Testosterone, and PRL) were done
Because of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a
The objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w
... Show MoreThe study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on
The Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreExperimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreThe presence of a single complex adaptive weight in each element channel of an adaptive array antenna is sufficient for processing of narrowband signals. The ability of an adaptive array antenna to null interference deteriorates rapidly as the interference bandwidth increases. The performance of narrowband adaptive array antenna with LMCV Beamforming algorithm is examined. The interaction effects between received signal angle of arrival and array parameters like the interelement spacing and the number of array element and the received signal bandwidth were studied. The output Signal to Interference plus Noise Ratio (SINR) and Interference to Noise Ratio (INR) are used as performance parameters for evaluation of these effects. It is found
... Show MoreKE Sharquie, AA Noaimi, SY Mohsin, 2011 - Cited by 4