وفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنفسية والاشعة تحت الحمراء) التي اعطت اشكال رباعية السطوح لكل المعقدات بصيغة متعادلة والليكاند ثلاثي السن من نوع (نيتروجين- اوكسجين- اوكسجين) ثم دراسة التحلل الحراري لبعض المركبات المحضرة بتقنية التحليل الوزني الحراري و المسعر التفاضلي مطيافية الكتلة . استخدم الصبغة المعقدات المحضرة منها لتحدد قابليتها على كبح الجذور الحرة من خلال قياس قابليتها كمضادات اكسدة باستخدام مادة DPPHكجذر حر وحامض الاسكوربك كمادة قياسية وتحديد قيمة IC50 حيث وجد ان الليكاند يمتلك قابلية عالية على كبح الجذور الحرة والمعقدات تفاوتت قابليتها على الكبح حسب قيمة IC50وكانت النتائج كما يلي
A Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show MoreCoupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show MoreThe new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show MoreAzo ligand 4-((2-hydroxy-3,5-dimethylphenyl)diazenyl) benzoic acid was synthesized from 4-aminobenzoic acid and 2,4- dimethylphenol. Azo dye compounds have been characterized by different techniques (1H-NMR, UV-Vis and FT-IR). Metal chelates of (ZnII, CdII and HgII) have been synthesized with azo ligand (L). Produced compounds have been identified by using spectral studies, elemental analysis(C.H.N.) and conductivity. Produced metal chelates were studied using mole ratio as well sequences contrast types. Rate of concentration(1×10-4-3×10-4 Mole/L) sequence Beer's law. Compound solutions have been noticed height molar absorptivity. The addendum of ligand and compounds has applied as disperse dyes on cotton fabrics for antibacterial activit
... Show MoreIn this work, a series of new Nucleoside analogues (D-galactopyranose linked to oxepanebenzimidazole moiety) was synthesized via multisteps synthesis. The first step involved preparation of two benzimidazoles 2-styrylbenzimidazole and 2-(phenyl ethynyl) benzimidazole via reaction of phenylenediamine with cinnamic acid or ?-phenyl propiolic acid. Electrophilic addition of the prepared benzimidazoles by three anhydrides in the second step afforded (4-6) and (14-16) which in turn were treated with 1,2,3,4-di-O-isopropylidene galactopyranose in the third step to afford a series of the desirable protected nucleoside analogues (7-9) ,(17-19)which after hydrolysis in methanolic sodium methoxidein the fourth step afforded the free nucleoside analog
... Show MoreThis new azo dye 7-(3-hydroxy-phenylazo)-quinoline-8-ol was subsequently used to prepare a series of complexes with the chlorides of Fe, Co, Zn, Ru, Rh and Cd. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a trigonal behavior, and that the complexes gave tetrahedral, except for Fe, Ru and Rh octahedral was given, that all of them are non-electrolytes. The effectiveness of both the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard substance, the
... Show More