Background: The occurrence of seizures in bacterial meningitis is important, as it has been reported to increase the risk of complications; however, its frequency and predictors are not well studied yet. Objective: To assess the frequency, clinical, and biochemical predictors of seizures in children with acute bacterial meningitis. Method: A cross-sectional study recruited confirmed acute bacterial meningitis cases based on positive CSF culture and sensitivity among children aged 2 months to 15 years admitted to the Central Child Teaching Hospital emergency department in Iraq. Patients were divided into two groups based on seizure at presentation time. Demographic characteristics [age, gender, residence, duration of fever and disease, presenting complaints and antibiotic intake]; hematological [WBC, neutrophils] Lymphocyte, N/L ratio, packed cell volume, platelets, blood sugar, and cerebrospinal fluid (CSF) indices were compared between groups. Results: Seizures had a frequency of 18% among the 122 children and were significantly higher in younger cases with female predominance. By multivariate analysis and odds ratio (OR), predictors for seizure were as follows: CSF lymphocytes (OR=0.25, 95%CI=0.08–0.26), lethargy (OR=8.15, 95%CI=1.03-68.65), headache (OR=0.09, 95%CI=0.02-0.45), neck stiffness (OR=0.07, 95% CI=0.01-0.61) and poor feeding (OR=4.8, 95%CI=1.21–18.97). Conclusions: CSF lymphocytes reliably predicted seizure with good sensitivity and specificity of 75% and 73%. Lethargy and poor feeding had the highest odds as clinical predictors of seizures. Together, those results can help with risk stratification and allocate resources for high-risk cases to improve patient outcomes
The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show Moreالمستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More