Background: The occurrence of seizures in bacterial meningitis is important, as it has been reported to increase the risk of complications; however, its frequency and predictors are not well studied yet. Objective: To assess the frequency, clinical, and biochemical predictors of seizures in children with acute bacterial meningitis. Method: A cross-sectional study recruited confirmed acute bacterial meningitis cases based on positive CSF culture and sensitivity among children aged 2 months to 15 years admitted to the Central Child Teaching Hospital emergency department in Iraq. Patients were divided into two groups based on seizure at presentation time. Demographic characteristics [age, gender, residence, duration of fever and disease, presenting complaints and antibiotic intake]; hematological [WBC, neutrophils] Lymphocyte, N/L ratio, packed cell volume, platelets, blood sugar, and cerebrospinal fluid (CSF) indices were compared between groups. Results: Seizures had a frequency of 18% among the 122 children and were significantly higher in younger cases with female predominance. By multivariate analysis and odds ratio (OR), predictors for seizure were as follows: CSF lymphocytes (OR=0.25, 95%CI=0.08–0.26), lethargy (OR=8.15, 95%CI=1.03-68.65), headache (OR=0.09, 95%CI=0.02-0.45), neck stiffness (OR=0.07, 95% CI=0.01-0.61) and poor feeding (OR=4.8, 95%CI=1.21–18.97). Conclusions: CSF lymphocytes reliably predicted seizure with good sensitivity and specificity of 75% and 73%. Lethargy and poor feeding had the highest odds as clinical predictors of seizures. Together, those results can help with risk stratification and allocate resources for high-risk cases to improve patient outcomes
Polyacetal was synthesized from the reaction of PVA with para-methyoxy benzaldehyde. Polymer metal complexwas prepared by reaction with Cu, polymer blend with Chitosan was prepared through the technique of solution casting method.All prepared compounds have been characterized through FT-IR, DSC, SEM as well as the Biological activity. The FT-IR results indicated the formation of polyacetal. The DSC results indicated the thermal stability regarding prepared polymer, polymermetal complex and Chitosan polymer blends. Antibacterial potential related to synthesized polyacetal, its metal complex andChitosan blend against four types of bacteria namely, Staphylococcus aureas, Psedomonas aeruginosa, Bacillus subtilis, Escherichia coli was examined a
... Show MoreThis paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the oxidization state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3 nm at the three flow rate of argon gas. The chemical composition and structural properties of the
... Show More