Recent reports of new pollution issues brought on by the presence of medications in the aquatic environment have sparked a great deal of interest in studies aiming at analyzing and mitigating the associated environmental risks, as well as the extent of this contamination. The main sources of pharmaceutical contaminants in natural lakes and rivers include clinic sewage, pharmaceutical production wastewater, and sewage from residences that have been contaminated by drug users' excretions. In evaluating the health of rivers, pharmaceutical pollutants have been identified as one of the emerging pollutants. The previous studies showed that the contaminants in pharmaceuticals that are widely used are non-steroidal anti-inflammatory drugs, antibiotics, antiretrovirals, and anticancer drugs. Additionally, this review demonstrated the use of analytical techniques to examine these contaminants in various kinds of River water. Due to their extremely low concentrations in the aqueous environment (about in the range of ng/L to g/L), it is necessary to apply a technique for highly sensitive and selective multicomponent simultaneous analysis to identify and quantify these products. This analytical technique provides a flexible and reliable means to identify and evaluate pharmaceutical contaminants in river water samples by combining solid phase extraction and hyphenated mass spectrometric techniques. SPE-LC/MS/MS is the main method for estimating the level of pollution.
The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MoreThis study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
Cocoon of larva