Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K, the nickel sulfoselenide thin films are polycrystalline with an efficient regularity and best crystalline quality. In addition, the results demonstrate that the intersection argument for the optical properties under investigation provid the direct bandgap, over which the films have inferred on variety (
Biotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show MoreObjective: The present study investigates whether the exposure to low-power diode laser induces denaturation in red blood cell (RBC) membrane protein composition, and determines the irradiation time for when denaturation of membrane protein process begins. Background: A low-energy laser has been used extensively in medical applications. Several studies indicated significant positive effects of laser therapy on biological systems. In contrast, other studies reported that laser induced unwanted changes in cell structure and biological systems. The present work studied the effect of irradiation time of low-power diode laser on the structure of membrane proteins of human RBCs. Materials and methods: The RBC suspension was divided into five equa
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreIn this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur
In this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi
... Show MoreGlobally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreThe present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%
... Show MoreA new 5‐fluorouracil–naproxen conjugate is synthesized as a mutual prodrug for targeting cancer tissues. The structure of the target compound and their intermediate are characterized by their melting point, IR, 1H NMR, 13C NMR, and elemental microanalysis. The cytotoxic activity is preliminarily evaluated using nonsmall lung cancer CRL‐2049, human breast cancer CAL‐51, and one type of normal cell line; rat embryo fibroblast cell line. The synthesized compound shows a good cytotoxic effect at the cancer cell and no significant effect at rat embryo fibroblast cell line.
In this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.