Polyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range of frequency (15-150) kHz. The results demonstrated that the addition of copper nanoparticles to polyaniline matrix increases the dielectric permittivity property and it decreases with increasing the frequency to reach a fixed value. So, the electrical conductivity of studied samples decrease with increasing the frequency.
Liquid – liquid interface reaction is the method for
preparation nanoparticles (NP'S) which depend on the super
saturation of ions that provide by using the system that consist from
toluene and water, the first one is above the second to obtain
nanoparticles (NP's) CdS at the interface separated between these
two immiscible liquid. The structure properties were characterized by
XRD-diffraction and transmission electron microscopy.
The crystalline size estimate from X-ray diffraction pattern
using Scherer equation to be about 7nm,and by TEM analysis give us
that ananosize is about 5 nm which give a strong comparable with
Bohr radius. Photoluminescence analysis give two emission peak,
the first one around
This research focuses on the characteristics of polyvinyl alcohol and starch polymer blends doping with Rhodamine-B. The polymer blends were prepared using the solution cast method, which comprises 1:1(wt. /wt.). The polymer blends of PVA and starch with had different ratios of glycerin 0, 25, 30, 35, and 40 % wt. The ratio of 30% wt of glycerin was found to be the most suitable mechanical properties by strength and elasticity. The polymer blend of 1:1 wt ratios of starch/PVA and 30% wt of glycerin were doped with different ratios of Rhoda mine-B dye 0, 1, 2, 3, 4, 5, and 6% wt and the electrical properties of doping biodegradable blends were studied. The ratio of Rhodamine-B 5% wt to the polymer blends showed hi
... Show MorePlantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed
... Show MoreCilnidipine is a dihydropyridine class of calcium channel blockers, it is classified as a BCS class II drug, characterized by a low oral bioavailability of 13%. Consequently, the utilization of nanoparticle preparation is anticipated to enhance its bioavailability. The objective of the research is to integrate cilnidipine nanoparticles into oral films as a means of enhancing patient adherence. The optimal polymers for producing Cilnidipine films were PVA cold and or HPMC E5 at different concentrations using a casting technique with glycerol as a plasticizer. The Nano suspension-based preparation of Cilnidipine's oral film containing the combination of polymers exhibited a significant enhancement in vitro dissolution, with a percentage excee
... Show MoreSamples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct