The reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with Zn(II) ion was formed tetrahedral .The molar ratio and metal estimation showed , the ratio of( L-as-gly) to metal ions was (1:1) . (M/L).
This study aimed to fabricate a curcumin@platinum nanohybrid (CUR@Pt NPs) through a green tea–based synthesis method and to evaluate its various functions, including antioxidant, burn-healing, and selective anticancer activities against PANC-1 pancreatic cancer cells. Green tea polyphenols served as natural reducing and stabilizing agents, facilitating an eco-friendly, single-step manufacturing process. Physicochemical characterization confirmed successful nanohybrid formation: a CUR@Pt band appeared at 457 nm in the UV–Vis spectrum, XRD displayed crystalline platinum peaks at 2θ = 46.9°, and 67.0°, matching the (200), and (220) planes, respectively, and TEM images showed well-dispersed spherical nanoparticles with an average siz
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreBackground: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreCladosporium sp. plays an important role in human health, it is one of the pathogenic fungi which cause allergy and asthma and most frequently isolated from airborne spores. In this study, a couple of universal PCR primers were designed to identify the pathogenic fungi Cladosporium sp. according to conserved region 5.8S, 18S and 28S subunit ribosomal RNA gene in Cladosporium species. In silico RFLP-PCR were used to identify twenty-four Cladosporium strains. The results showed that the universal primer has the specificity to amplify the conserved region in 24 species as a band in virtual agarose gel. They also showed that the RFLP method is able to identify three Cladosporium spe
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More