It has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems. The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and controlled to carry an object from one position to another. The movement of the system is controlled using three linear potentiometers, which are connected to an analog input of the microcontroller to feed the value of the pneumatic rod distance. To achieve the best path of the product moving, it is necessary to compare among several sequences. . The results show the sequences that compared with the reference under fixed speed, such as sequence that has been developed by combining two axes, and then the system path time has been reduced in taking the product from one place to another. Therefore, some factories need to reduce the sequences and thus reduce the time to transfer the product.
To create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% vo
... Show Morepaid recent developments in the information and communications technology and the accompanying developments in the global market to pay particular accounting information users to demand more sophistication in terms of corporate financial reporting systems, which led to the emergence of a new type of reporting (financial reporting in real time). where is the information and communications technology mainstay Nations for the development and progress, thanks to the development of technology that have made the transmission of information easily conducted and high speed to all who need it, communication is instantaneous and the flow of information via the internet dramatically exceeded the border temporal and spatial anywhere in the w
... Show MoreThis study aims to find out the effectiveness of instructional scaffolding strategy in the development of academic achievement and critical thinking of female second grade secondary mathematics students. Semi-experimental and relational descriptive method was used. The sample of the study consisted of (50) students divided into an experimental group and a control group. The experimental group was taught using scaffolding strategy whereas the control group was taught using traditional method. Pre- and Post-tests were used to achieve the objective of the study. The results of the study revealed that there are statistically significant differences in the mean scores of the experimental and control groups in the posttest for both the academi
... Show MoreGas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates
ABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
Experimental densities, viscosities η, and refractive indices nD data of the ternary ethanol+ n-hexane + 3-methyl pentane system have been determined at temperatures 293.15,303.15 and 313.15 K and at atmospheric pressure then these properties were calculated theoretically by using mixing rules for densities, viscosities and refractive indices .After that the theoretical data and the experimental data were compared due to the high relative errors in viscosities an equation of viscosity was proposed to decrease the relative errors.
This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreIn this study, dead and live anaerobic biomass was used in biosorption of Pb(II), Cr(III) and Cd(II) ions from a synthetic wastewater. The biosorption was investigated by batch adsorption experiments. It was found that, the biosorption capacities were significantly affected by biosorbent dosage. The process follows Langmuir isotherm (regression coefficient 0.995, 0.99 and 0.987 for Pb(II), Cr(III) and Cd(II) ions, respectively, onto dead anaerobic biomass) model with uniform distribution over the biomass surface. The experimental uptake capacity was 51.56, 29.2 and 28 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto dead anaerobic biomass, compared with 35, 13.6 and 11.8 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto live
... Show More