In this paper, the effect of thermal radiation and magnetic field on the boundary layer flow and heat transfer of a viscous fluid due to an exponentially stretching sheet is proposed. The governing boundary layer equations are reduced to a system of ordinary differential equations. The homotopy analysis method (HAM) is employed to solve the velocity and temperature equations.
The objective of this research is to study the possibility of reducing the reflectivity of the front surface of a silicon cell (Si / Si) by using a theoretical design for a single-layer Antireflection Coatings with a thickness of one quarter of the design wavelength. Then, Mathematical programs in MATLAB (10) were designed to study the quantitative efficiency of the cell as a function of the change in the particle size of the coating within the range (400 - 700 nm) wavelength of the visible state of the vertical and oblique state at the (45°) angle. (Ge) was used as an anti-reflective material. It was found that the highest quantitative efficiency was (96.9004%) at design wavelength (λ0= 550 nm)
... Show MoreThe Topography, Physical and Optical properties of as-deposited copper oxide CuO absorption layer sprayed using homemade fully computerized CNC spray pyrolysis deposition technique at different deposition speed are reported. These layers are characterized by UV-Visible spectrophotometer, optical microscope, and thickness monitor studies. The optical transmittance study indicates that these layer exhibit high absorption coefficient in the visible range. The optical band gap is found to be at about at speeds (3,6 mm/s). Better homogeneity in CuO layer is found at the speed 5 mm/s. The film thickness lies within the 129-412 nm range.
This work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp
... Show MoreIn the present study, 1-ethyl -3-methyllimidazolium acetate ionic liquid is introduced for extractive desulfurization of Iraqi kerosene (1622ppm) and compared with 1-ethyl -3- methyllimidazolium tetrafloroborate. The effect of ionic liquid/ fuel ratio (1/9, 1/4, 1/2), temperature (25, 30,40oC), stirring speed (300,450rpm) and time (10, 30, 90, 180, 360 min) were studied. Sulfur compound analysis was performed using X-Ray fluorescence. The ionic liquid with acetate anion (OAc) showed better performance than tetrafloborate (BF4). The maximum extraction efficiency was 32% achieved at 1/2 IL/Fuel and 40oC after 90min. The oxidation step using hydrogen peroxide (8ml/200ml), catalyzed by acetic acid (2ml) and followed by ionic liquid extraction h
... Show MoreBackground: A tattoo is a foreign material implanted into the dermis by needle or some other trauma that
results in a visible mark in the skin .either decorative or cosmetic tattoos or may be traumatic tattoos
resulting from car accident or iatrogenic tattoos placed in radiation ports. There are many ways for tattoo
removal one of them is laser treatment by Q-Switched (1064 nm and 532 nm) Nd: YAG Laser.
Objectives: The purpose of this study is to evaluate the efficacy and safety of Q-Switched Nd: YAG (1064 &532 nm) Laser in treatment of tattoos.
Patient and Method: Nineteen lesions of tattoo in different body sites in nine patients collected in private
plastic surgery clinic in
Sustainability including renewable energy and green power, is one of the important feature in recent years due to environmental constraints and the emission of CO2 from fossil fuel. Pressure retarded osmosis (PRO) process is considered one of the effective technology for power generation. This study assessed the application of pressure retarded osmosis to produce power from Tigris River water in Baghdad City, Iraq. Spiral wound TFC membrane was tested in the PRO process with different variables. The effect of different types of draw solutions (MgCl2, NaCl, Sodium Formate, KCl, Sodium Acetate), applied pressure (0 – 7 bar), and draw solution concentration (0.08 and 0.4 M) were tested in this work. The flux, recovery, and power density for
... Show MoreIn this paper activated carbon adsorbents produced from waste tires by chemical activation methods and application of microwave assisted KOH activation. The influence of radiation time, radiation power, and impregnation ratio on the yield and oil removal which is one of the major environmental issues nowadays and considered persistent environmental contaminants and many of them are suspected of being carcinogenic. Based on Box-Wilson central composite design, polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum conditions of 4 min radiation time, 700 W radiation power and 0.5 g/g impregnation ratio
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o