Preferred Language
Articles
/
4hckWZIBVTCNdQwCb6zI
Optimized ensemble deep random vector functional link with nature inspired algorithm and boruta feature selection: Multi-site intelligent model for air quality index forecasting
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Application Artificial Forecasting Techniques in Cost Management (review)
...Show More Authors

For the duration of the last few many years many improvement in computer technology, software program programming and application production had been followed with the aid of diverse engineering disciplines. Those trends are on the whole focusing on synthetic intelligence strategies. Therefore, a number of definitions are supplied, which recognition at the concept of artificial intelligence from exclusive viewpoints. This paper shows current applications of artificial intelligence (AI) that facilitate cost management in civil engineering tasks. An evaluation of the artificial intelligence in its precise partial branches is supplied. These branches or strategies contributed to the creation of a sizable group of fashions s

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Wed Oct 07 2020
Journal Name
Indian Journal Of Forensic Medicine &amp; Toxicology
Effectiveness of Deep Brain Stimulation in Iraqi Patients with Parkinson Disease
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 28 2015
Journal Name
Journal Of Mathematics And System Science
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
...Show More Authors

Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Measuring Positive and Negative Association of Apriori Algorithm with Cosine Correlation Analysis
...Show More Authors

This work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Oct 29 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Optimization Techniques for Human Multi-Biometric Recognition System
...Show More Authors

Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa

... Show More
View Publication
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Purification Techniques for Cheap Multi –Walled Carbon Nanotubes
...Show More Authors
Abstract<p>Multi-walled carbon nanotubes from cheap tubs company MWCNT-CP were purified by alcohol \ H2O2 \ separation funnel which is simple, easy and scalable techniques. The steps of purification were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy SEM with energy dispersive of X-ray spectroscopy EDX and surface area measurements. The technique was succeeded to remove most the trace element from MWCNT-CP which causing increase the surface area. The ratios of impurities were reduced to less 0.6% after treatment by three steps with losing less than 5% from MWCNT-CP.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jul 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using a 3D Chaotic Dynamic System as a Random Key Generator for Image Steganography
...Show More Authors

In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 20 2016
Journal Name
Sociological Methods &amp; Research
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo

... Show More
View Publication
Scopus (15)
Crossref (10)
Scopus Clarivate Crossref