Preferred Language
Articles
/
4hbtcYcBVTCNdQwCAEog
Flow units and rock type for reservoir characterization in carbonate reservoir: case study, south of Iraq
...Show More Authors
Abstract<p>The current work is focused on the rock typing and flow unit classification for reservoir characterization in carbonate reservoir, a Yamama Reservoir in south of Iraq (Ratawi Field) has been selected, and the study is depending on the logs and cores data from five wells which penetrate Yamama formation. Yamama Reservoir was divided into twenty flow units and rock types, depending on the Microfacies and Electrofacies Character, the well logs pattern, Porosity–Water saturation relationship, flow zone indicator (FZI) method, capillary pressure analysis, and Porosity–Permeability relationship (R35) and cluster analysis method. Four rock types and groups have been identified in the Yamama formation depending on the FZI method, where the first group represents the bad reservoir quality (FZI-1) (Mudstone Microfacies and Foraminiferal wackestone Microfacies), the second group reflects a moderate quality of reservoir (FZI-2) (Algal wackestone–Packstone Microfacies and Bioclastic wackestone–Packstone Microfacies), the third group represents good reservoir quality (FZI-3) (Peloidal Packstone–Grainstone Microfacies), and the fourth group represents a very good reservoir quality (FZI-4) (Peloidal–oolitic Grainstone Microfacies). Capillary pressure curves and cluster analysis methods show four different rock types: a very good quality of reservoir and porous (Mega port type) (FZI-4) (Peloidal–oolitic Grainstone Microfacies) with a low irreducible Water saturation (Swi), good quality of reservoir and porous (Macro port type) (FZI-3) (Peloidal Packstone–Grainstone Microfacies), moderate quality of reservoir (Meso port type) (FZI-2) (Algal wackestone–Packstone Microfacies and Bioclastic wackestone–Packstone Microfacies), and a very fine-grained with bad reservoir quality (Micro port type) (FZI-1) (Mudstone Microfacies and Foraminiferal wackestone Microfacies) and with the higher displacement of pressure). These capillary pressure curves support the subdivision of the main reservoir unit to flow units. </p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 31 2021
Journal Name
Iraqi Geological Journal
Use Conventional and Statistical Methods for Porosity Estimating in Carbonate Reservoir in Southern Iraq, Case Study
...Show More Authors

Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol

... Show More
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Statistical, Hydraulic Flow Units, and ANN Methods
...Show More Authors

   Permeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.

   A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Cluster Analysis Approach to Identify Rock Type in Tertiary Reservoir of Khabaz Oil Field Case Study
...Show More Authors

Rock type identification is very important task in Reservoir characterization in order to constrict robust reservoir models. There are several approaches have been introduced to define the rock type in reservoirs and each approach should relate the geological and petrophysical properties, such that each rock type is proportional to a unique hydraulic flow unit. A hydraulic flow unit is a reservoir zone that is laterally and vertically has similar flow and bedding characteristics. According to effect of rock type in reservoir performance, many empirical and statistical approaches introduced.  In this paper Cluster Analysis technique is used to identify the rock groups in tertiary reservoir for Khabaz oil field by analyses variation o

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Geological Journal
A Review on Pressure Transient Analysis in Multilayer Reservoir: South Iraq Case Study
...Show More Authors

Multilayer reservoirs are currently modeled as a single zone system by averaging the reservoir parameters associated with each reservoir zone. However, this type of modeling is rarely accurate because a single zone system does not account for the fact that each zone's pressure decreases independently. Pressure drop for each zone has an effect on the total output and would result in inter-flow and the premature depletion of one of the zones. Understanding reservoir performance requires a precise estimation of each layer's permeability and skin factor. The Multilayer Transient Analysis is a well-testing technique designed to determine formation properties in more than one layer, and its effectiveness over the past two decades has been

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon May 31 2021
Journal Name
Iraqi Geological Journal
Mechanical Rock Properties Estimation for Carbonate Reservoir Using Laboratory Measurement: A Case Study from Jeribe, Khasib and Mishrif Formations in Fauqi Oil Field
...Show More Authors

Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Tue Dec 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrofacies Characterization of an Iraqi Carbonate Reservoir
...Show More Authors

 

Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.

The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 08 2018
Journal Name
Modeling Earth Systems And Environment
Sedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern Iraq
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Determination of Reservoir Hydraulic Flow Units and Permeability Estimation Using Flow Zone Indicator Method
...Show More Authors

   Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Hydraulic Flow Units for Jeribe Reservoir in Jambour Oil Field Applying Flow Zone Indicator Method
...Show More Authors

The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.    This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized poros

... Show More
View Publication
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Hydraulic Flow Units for Jeribe Reservoir in Jambour Oil Field Applying Flow Zone Indicator Method
...Show More Authors

The Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.

   This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por

... Show More
View Publication Preview PDF
Crossref