To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and multi-objective optimizations are performed using the predictive model to optimize the thermal and electrical productivity under different scenarios. The findings indicate the significance of the thermal exergy effectiveness, as evidenced by its low P-value for all solar system responses, indicating its crucial role in the predictive model. For single-objective optimization, the desirability is equal to 1 in cases where only heat transfer efficiency, whole energy effectiveness, or thermal exergy efficiency is maximized or only destroyed exergy is minimized. The improvements in energy and exergy efficiencies range from 3.55% to 69.13%, with the amount of destroyed exergy reduced by 81.47% compared to the base case. For multi-objective optimization, desirability values exceeding 0.829 and 0.655 are obtained for single and multi-objective scenarios, respectively, indicating that the expected performance is within desirable limits. The findings provide valuable insights for designing high-efficiency photovoltaic/thermal systems and addressing their challenges and limitations.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
Turbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily reading data was
... Show MoreTurbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily readi
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
The current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds
... Show MoreOpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad
... Show MoreNeurolinguistics is a new science, which studies the close relationship between language and neuroscience, and this new interdisciplinary field confirms the functional integration between language and the nervous system, that is, the movement of linguistic information in the brain in receiving, acquiring and producing to achieve linguistic communication; Because language is in fact a mental process that takes place only through the nervous system, and this research shows the benefit of each of these two fields to the other, and this science includes important topics, including: language acquisition, the linguistic abilities of the two hemispheres of the brain, the linguistic responsibility of the brain centers, and the time limit for langua
... Show MoreThe study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show More