This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical mathematical approach by using the MINITAB-statistical software for both surface roughness and hardness were obtained. Experimental results indicated that rotational speed is the most significant parameters on change in surface roughness(ΔRa), and for change in surface hardness (ΔHa), volume of powder is the significant one. As a result, it was seen that the magnetic abrasive polishing was very useful for finishing the brass alloy plate.
Objectives: To identify the effectiveness program on nurse- midwife practice concerning performed
cardiotocography to pregnant women and to find out the relationship between nurse- midwife practice and
certain studied variables.
Methodology: A quasi-experimental design (pretest-post test approach) was conducted at three sector AlRussafa
directorate, AL- Karckh directorate and Medical City Directorate from the period of March, 26th 2014
to August, 30th 2015. A non-probability sample consisted of (130) nurse -midwives were selected and divided
into two groups (65) nurses-midwives (case group) who exposed to the educational program and (65 ) nursesmidwives
who didn't expose to the program considered as control group . D
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreSecurity concerns in the transfer of medical images have drawn a lot of attention to the topic of medical picture encryption as of late. Furthermore, recent events have brought attention to the fact that medical photographs are constantly being produced and circulated online, necessitating safeguards against their inappropriate use. To improve the design of the AES algorithm standard for medical picture encryption, this research presents several new criteria. It was created so that needs for higher levels of safety and higher levels of performance could be met. First, the pixels in the image are diffused to randomly mix them up and disperse them all over the screen. Rather than using rounds, the suggested technique utilizes a cascad
... Show MoreMetal-organic frameworks (MOFs) are a relatively new class of materials of unique porous structures and exceptional properties. Currently, more than 110,000 types of MOFs have been reported among the countless possibilities. In this study, we have synthesised a novel MOF using zirconium chloride as the metal source and 4,4'-dicarboxy-2,2'-biquinoline (bicinchoninic acid disodium salt) as the linker, which reacted in N,N-Dimethylformamide (DMF) solvent. Three preparation methods were employed to prepare five types of the MOF, and they were compared to optimize the synthesis conditions. The resulting MOFs, named Zr-BADS, were characterised using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microscopy, and
... Show MoreRecently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat
... Show More