This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical mathematical approach by using the MINITAB-statistical software for both surface roughness and hardness were obtained. Experimental results indicated that rotational speed is the most significant parameters on change in surface roughness(ΔRa), and for change in surface hardness (ΔHa), volume of powder is the significant one. As a result, it was seen that the magnetic abrasive polishing was very useful for finishing the brass alloy plate.
Glaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 artic
... Show MoreThis work employs the conceptions of neutrosophic crisp a-open and semi-a-open sets to distinguish some novel forms of weakly neutrosophic crisp open mappings; for instance, neutrosophic crisp a-open mappings, neutrosophic crisp a*-open mappings, neutrosophic crisp a**-open mappings, neutrosophic crisp semi-a-open mappings, neutrosophic crisp semi-a*-open mappings, and neutrosophic crisp semi-a**-open mappings. Moreover, the close connections between these forms of weakly neutrosophic crisp open mappings and the viewpoints of neutrosophic crisp open mappings are explained. Additionally, various theorems and related features and notes are submitted.
A comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show MoreIn this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
It is known that images differ from texts in many aspects, such as high repetition and correlation, local structure, capacitance characteristics and frequency. As a result, traditional encryption methods can not be applied to images. In this paper we present a method for designing a simple and efficient messy system using a difference in the output sequence. To meet the requirements of image encryption, we create a new coding system for linear and nonlinear structures based on the generation of a new key based on chaotic maps.
The design uses a kind of chaotic maps including the Chebyshev 1D map, depending on the parameters, for a good random appearance. The output is a test in several measurements, including the complexity of th
... Show MoreA fault is an error that has effects on system behaviour. A software metric is a value that represents the degree to which software processes work properly and where faults are more probable to occur. In this research, we study the effects of removing redundancy and log transformation based on threshold values for identifying faults-prone classes of software. The study also contains a comparison of the metric values of an original dataset with those after removing redundancy and log transformation. E-learning and system dataset were taken as case studies. The fault ratio ranged from 1%-31% and 0%-10% for the original dataset and 1%-10% and 0%-4% after removing redundancy and log transformation, respectively. These results impacted direct
... Show MoreThe present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil system
... Show MoreIn this work , we study different chaotic properties of the product space on a one-step shift of a finite type, as well as other spaces. We prove that the product is Lyapunove –unstable if and only if at least one or is Lyapunove –unstable. Also, we show that and locally everywhere onto (l.e.o) if and only if is locally everywhere onto (l.e.o) .
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.