This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical mathematical approach by using the MINITAB-statistical software for both surface roughness and hardness were obtained. Experimental results indicated that rotational speed is the most significant parameters on change in surface roughness(ΔRa), and for change in surface hardness (ΔHa), volume of powder is the significant one. As a result, it was seen that the magnetic abrasive polishing was very useful for finishing the brass alloy plate.
The study aims to investigate the antimicrobial activity of propolis obtained from different regions of Iraq compared with that of propolis obtained from Iran. Samples were investigated for their antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Eschericha coli, Klebsiella pneumoniae, Bacillus cereus , Staphylococcus epidermidis and Candida albicans using standard antimicrobial assays. Marked variations in the antimicrobial activity of the different propolis samples were observed, the method of extraction selected gives the highest antimicrobial activity and the best alcohol concentration using in the extraction of propolis , then the crude extract of propolis showed synergistic effect with some antibiotics in
... Show MoreLike the digital watermark, which has been highlighted in previous studies, the quantum watermark aims to protect the copyright of any image and to validate its ownership using visible or invisible logos embedded in the cover image. In this paper, we propose a method to include an image logo in a cover image based on quantum fields, where a certain amount of texture is encapsulated to encode the logo image before it is included in the cover image. The method also involves transforming wavelets such as Haar base transformation and geometric transformation. These combination methods achieve a high degree of security and robustness for watermarking technology. The digital results obtained from the experiment show that the values of Peak Sig
... Show MoreThe study aims at showing the role of tax audit in Impact the quality of tax statements. Tax audit is one of the most important means used by tax management to identify taxable revenues in a just, fair manner. The quality of statements relies on the extent to which the information provided by taxpayers is true and accurate. Tax audit works is compatible with the strategy of increasing tax adherence and detecting non-adherence cases and penalizing those who commit such violations. The study reached a number of results and conclusions. One of the most important results is that tax audit helps improve the information content of the taxpayers tax statements. This leads to recalculating taxable incomes and re-fixing t
... Show MoreIn this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The perform
Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting m
... Show MoreCohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were de
... Show MoreThis paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
A design and construction of Fabry -Perot Interometer system were achivcd to spcify and calculate wavelengths to the neart nanometers for spectroscopic research investigation, this accuracy required for as the refractive index is a function of pressure on the medium when the space between the two windows is keptn constant .
He-Ne laser (632.8) nrn and the green laser (532) nm were used as
coherent sources.
Lasers of (632.8) & (532)nm respeCtively, were used as coherent sources. Results showed accuracy of (0.2)nm in determining the waveleng
... Show More