Some experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.
Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreAbstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show MoreLinear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust
... Show MoreA condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
Theresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had
... Show MoreThe cancer is one of the biggest health problems that facing the world . And the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After
... Show MoreThe aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.
In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We derived posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the
... Show More