Solar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct represents case A. A 2D, steady-state simulation model that took into account the impact of the convective flow of air circulating inside the PVT system in addition to radiative and convective heat losses from the front PV surface was developed and validated via previous tests. The results revealed that, under the same volume requirements, the application of surface zigzags is preferred for airflow rates of 0.06 kg/s or less, whereas the introduction of fins is preferred for higher airflow rates. The results also revealed that, of the three cases considered, the introduction of the fin–surface zigzag combination is the most effective and has the potential to improve the electrical and thermal efficiency by ~26% and 3%, respectively.
A review of the literature on intellectual capital development was conducted using systemic criteria for the inclusion of relevant studies. The concepts behind the ideas explored in the present study were discussed in respect to the subject matter. Examining the past state of the art in the intellectual capital sector for achieving high levels of innovation performance provided a multidimensional picture of intellectual capital, innovation performance, and dynamic capabilities. The present review was designed to illustrate the correlation between intellectual capital and innovation performance, as well as the role of dynamic capabilities in moderating the relationship between these constructs. Accordingly, we presented an extensive
... Show MoreThe effect of three ionic liquids viz., 1-hexyl-3-methylimidazolium tetrafluoroborate (ILE), 1-hexyl-3-metylimidazolium hexafluorophosphate (ILF) and 1-octyl-3-methylimidazolium tetrafluoroborate (ILG) when used as surfactants on the performance of dissolved air floatation (DAF) was investigated.
Experiments were conducted at a temperature of 30-35 ºC, 10ppm ferric chloride as coagulant, 50% recycle ratio, pH 8, and 10 minutes treatment time to find oil and grease (OG) and turbidity removal efficiencies at saturation pressure (2-6) bar.
ILs were used at concentration of 50 µl/liter of treated water in two positions in DAF system; the saturation vessel and the treatment tank. The performance using ILs
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreAbstract:
Under the state scenario, fiscal policy will not be able to use the oil surpluses optimally and economically and society, as long as these surpluses are not directed by public expenditure towards new productive investments and by following the path of fiscal policy after one year 2003 and until 2013 we note that it is based on the method of spending (excessive) consumption, and did not take any action towards the budget deficit planned at the beginning of the fiscal year, and the actual surplus at the end of the fiscal year, which represents the highest expenditure in the budget, Salaries and wages of workers in various government agencies with the expansion of spending on the security side.&n
... Show MoreThe research aims to determine the role of green human resource management dimensions of (employment Green, training and development, green, performance evaluation Green, compensation and green bonuses) in the performance leadership of the organization dimensions of (advance planning, efficiency, effectiveness, index pioneering, renovation and modernization), Search of paramount importance because it addresses an important and modern issue in performance leadership, namely green management of human resources, aware of the importance of the subject and expected results of the company under study, an analysis of the data obtained through field visits in
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
For modeling a photovoltaic module, it is necessary to calculate the basic parameters which control the current-voltage characteristic curves, that is not provided by the manufacturer. Generally, for mono crystalline silicon module, the shunt resistance is generally high, and it is neglected in this model. In this study, three methods are presented for four parameters model. Explicit simplified method based on an analytical solution, slope method based on manufacturer data, and iterative method based on a numerical resolution. The results obtained for these methods were compared with experimental measured data. The iterative method was more accurate than the other two methods but more complexity. The average deviation of
... Show MoreBy using governing differential equation and the Rayleigh-Ritz method of minimizing the total potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal buckling equations were established for rectangular plate with different fixing edge conditions and with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane thermal force and thermal bending was obtained. Three types of thermal distribution have been considered these are: uniform temperature, linear distribution and non-linear thermal distribution across thickness. It is observed that the buckling strength enhanced considerably by additional clamping of edges. Also, the thermal buckling temperatures and
... Show MoreAbstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show More