Solar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct represents case A. A 2D, steady-state simulation model that took into account the impact of the convective flow of air circulating inside the PVT system in addition to radiative and convective heat losses from the front PV surface was developed and validated via previous tests. The results revealed that, under the same volume requirements, the application of surface zigzags is preferred for airflow rates of 0.06 kg/s or less, whereas the introduction of fins is preferred for higher airflow rates. The results also revealed that, of the three cases considered, the introduction of the fin–surface zigzag combination is the most effective and has the potential to improve the electrical and thermal efficiency by ~26% and 3%, respectively.
<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show More<span lang="EN-US">The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become con
... Show MoreAbstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreIn the present work, the thermo-fluid characteristics of a heat exchanger formed of helical coiled tubes immersed in cold water are investigated experimentally. Two types of helical coiled tube are tested, a conventional vertical single helical coiled tube and a new triple vertical helical coiled tube in parallel connection called as meshed coils. The effect of hot water flow rates inside the tubes (ranges from 2.67 to 7.08 l/min), and its inlet temperatures (namely 50, 60, 70 and 80 °C) are investigated. The experimental results show that increasing the flow rate inside the meshed coils leads to decrease the temperature difference between inlet and outlet. An enhancement of heat transfer for meshed coils compared to single coil has been n
... Show MoreBackground. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coating
... Show MoreBackground : surface area anatomy is a proportional point to the retention of complete denture, in past there was no quantitative method to evaluate the surface area, nowadays the size and shape of maxillary arch is measured by different electronically and mathematical devices. A study was therefore, undertaken to measure surface area of upper dental cast that was taken by different final impressions. Materials and methods: twenty patients were examined. All of them had a healthy palate with no singe of injury, trauma, or deformity. Casts were taken by three different final impressions; zinc oxide, additional silicon, and poly ether. And two different devices were used; the computerized one and the Aluminum foil measure. Age, se
... Show More
The present investigation deals with experimental study of three-phase direct-contact heat exchanger, for water-Freon R11 system, where water is the continuous phase (liquid) and Freon R11 (liquid-gas) is the dispersed phase. The test section consisted of a cylindrical Perspex column with inner diameter 8cm and 1.2m long, in which, water was to be confined. Liquid Freon R11 drops were injected into the hot water filled column, through a special design of distributors at the bottom of the column. The liquid Freon R11 drops rose on their way up and evaporated into two-phase bubbles at atmospheric pressure. The study was devoted to express the effect of process variables such as c
... Show MoreMobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10
... Show More