The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimizing deep learning models to operate efficiently on mobile devices, (2) ensuring real-time inference without compromising accuracy, (3) maintaining user privacy when processing sensitive facial data, and (4) addressing the variability in mobile phone cameras, input resolution, and platform limitations across Android and iOS. Furthermore, the increasing sophistication of identity spoofing attacks—such as 3D masks and AI-generated faces—demands more sophisticated, robust, and multimodal detection technologies. The research findings provide a clear roadmap toward practical solutions. By evaluating the latest deep learning architectures, datasets, and anti-spoofing metrics, the study proposes a comprehensive React Native deployment path using TensorFlow Lite and TensorFlow.js to ensure cross-platform compatibility. The proposed system offers a unified classification of identity spoofing attacks and defense mechanisms, along with a structured evaluation framework that compares on-device processing with server-side detection. The results demonstrate that optimized models can achieve high accuracy, low false accept/rejection rates, and sub-second processing speeds on mobile devices. Ultimately, the study provides practical design guidelines for building robust, privacy-preserving, efficient, and real-world consumer-grade fake face detection systems.
Background: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc
... Show MoreG-system composed of three isolates G3 ( Bacillus),G12 ( Arthrobacter )and G27 ( Brevibacterium) was used to detect the mutagenicity of the anticancer drug, cyclophosphamide (CP) under conditions similar to that used for standard mutagen, Nitrosoguanidine (NTG). The CP effected the survival fraction of isolates after treatment for 15 mins using gradual increasing concentrations, but at less extent comparing to NTG. The mutagenic effect of CP was at higher level than that of NTG when using streptomycin as a genetic marker, but the situation was reversed when using rifampicin resistant as a report marker. The latter effect appeared upon recording the mutagen efficiency (ie., number of induced mutants/microgram of mutagen). Measuring the R
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreBackground: Staphylococcus spp. are widely distributed in nature and can cause nosocomial, skin infections, and foodborne illness, and it may lead to severe financial losses in birds by causing systemic infection in numerous organs. Aim: This study was conducted to determine the prevalence of Staphylococcus spp. in humans and birds in Baghdad city. Methods: Seventy-six oral cavity swabs were collected, including 41 from birds and 35 from breeders. All samples were examined by bacteriological methods and identified by using the VITEK technique, the samples were then further studied to test the ability of biofilm formation, and MDR factors and MAR index were tested with the use of seven antibiotics. Results: Among the 76 oral swa
... Show MoreThe study included 200 samples were collected from children under two years included (50 samples from each of Cerebrospinal fluid, Blood, Stool and Urine) from, (Central Children Hospital and Children's Protections Educational Hospital) The Iraqi Ministry of Health, the Department of Health Baghdad .the period from the first of 2015 September to the first of December 2015, Were obtained isolates bacterial subjected to the cultural, microscopic and biochemical examination and diagnosed to the species by using vitek2 system .The results showed there were contamination in 6.5% of clinical samples. The diagnosed colonies which gave pink color on the MacConkey agar, golden yellow color on the Trypton Soy agar and green color on t
... Show MoreA biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis
... Show MoreThe research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan
... Show MoreBackground: The main purpose of this study is to find if there is any correlation between the level of C-reactive protein (CRP) in gingival crevicular fluid with its serum level in chronic periodontitis patients and to explore the differences between them according to the probing depth. Materials and methods: Forty seven male subjects enrolled in this study. Thirty males with chronic periodontitis considered as study group whom further subdivided according to probing depth into subgroup 1 with pocket depth ≤6mm, subgroup 2 with pocket depth >6mm. The other 17 subjects considered as controls. For all subjects, clinical examination where done for periodontal parameters plaque index (PLI), gingival index (GI), bleeding on probing (BOP),
... Show More