The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimizing deep learning models to operate efficiently on mobile devices, (2) ensuring real-time inference without compromising accuracy, (3) maintaining user privacy when processing sensitive facial data, and (4) addressing the variability in mobile phone cameras, input resolution, and platform limitations across Android and iOS. Furthermore, the increasing sophistication of identity spoofing attacks—such as 3D masks and AI-generated faces—demands more sophisticated, robust, and multimodal detection technologies. The research findings provide a clear roadmap toward practical solutions. By evaluating the latest deep learning architectures, datasets, and anti-spoofing metrics, the study proposes a comprehensive React Native deployment path using TensorFlow Lite and TensorFlow.js to ensure cross-platform compatibility. The proposed system offers a unified classification of identity spoofing attacks and defense mechanisms, along with a structured evaluation framework that compares on-device processing with server-side detection. The results demonstrate that optimized models can achieve high accuracy, low false accept/rejection rates, and sub-second processing speeds on mobile devices. Ultimately, the study provides practical design guidelines for building robust, privacy-preserving, efficient, and real-world consumer-grade fake face detection systems.
Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreThe research aims to identify the future teachers' attitudes toward cloud computing in the Kingdom of Saudi Arabia from their point of view. The research adopted the descriptive approach, and a questionnaire was applied to a random sample of (370) male and female teachers in governmental and private general education schools in the Al-Jouf region, Saudi Arabia. The results of the research concluded that the reality of future teachers' attitudes towards cloud computing in the Kingdom of Saudi Arabia from their point of view is very high and that most areas of using computing are in the field of assessment, then teaching, and activities. The challenges of future teachers' attitudes toward cloud computing are recorded at a high level, parti
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreThis paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreBackground A prospective clinical study was
performed to compare the efficacy of the use of lowmolecular-
weight heparin group (enoxparin group)
with control group in the prevention of deep-vein
thrombosis after total knee arthroplasty.
Aim of the study: to assess the prevalence of DVT
after total knee arthroplasty and evaluate the
importance of the use of low molecular weight
heparin in the prevention of this DVT.
Methods Thirty-three patients undergoing total
knee arthroplasty were randomly divided into two
groups. One group consisted of 12 patients who
received no prophylaxis with an anticoagulant (the
control group), other group consisted of 21 patients
who received the low-molecular-weight h